asammdf Documentation
Release 3.0.0

Daniel Hrisca

Feb 06, 2018

Contents

Introduction
1.1 Projectgoals e e e e e e e
1.2 Features. e e e e e
1.3 Major features not implemented (yet)o e
1.4 Dependencies o v it e e e e e e
1.5 Installation e e e
API
2.1 MDF .
22 MDF3 .
22.1 MDFversion2 &3blocks e
23 MDF4 . e
2.3.1 MDFversion4 blocks e e e e e
24 Signal e
2.5 Notes about the memory argument vt e e e e e e e e e e e e
2.5.1 MDF created with memory="full’ e
2.5.2 MDF created with memory="low’ e
2.5.3 MDF created with memory="minimum’ e
Tips
3.1 Impact of memory argumento L. e e e e e e e e e e e e e
3.1.1 MDF created with memory="full” e
3.1.2 MDF created with memory="low’ e e
3.1.3 MDF created with memory="minimum’ e
3.2 Chunked dataaccess v v i i e e e e e e e
33 Optimizedmethods e e
Examples
4.1 Working with MDF 0 0oL
4.2 Working with Signal L e e e e
Benchmarks
S0 TestSetup . . o o o e e e e e e e e e e e e
S5.I.1 Dependencies e e e e e e e e
5.1.2 0 Usage . . . o o e e e e e e
5.2 x64 Pythonresults L e e e e
52.1 Rawdata e e e

DA AW WwWWw

12
19
30
38
39
41
41
41
42

43
43
43
43
44
44
45

47
47
48

51
51
51
51
52
52

5.2.2 Graphical results

6 Indices and tables

asammdf Documentation, Release 3.0.0

asammd]f is a fast parser/editor for ASAM (Associtation for Standardisation of Automation and Measuring Systems)
MDF (Measurement Data Format) files.

asammdf supports MDF versions 2 (.dat), 3 (.mdf) and 4 (.mf4).
asammdf works on Python 2.7, and Python >= 3.4 (Travis CI tests done with Python 2.7 and Python >= 3.5)

Contents 1

asammdf Documentation, Release 3.0.0

2 Contents

CHAPTER 1

Introduction

1.1 Project goals

The main goals for this library are:
* to be faster than the other Python based mdf libraries

* to have clean and easy to understand code base

1.2 Features

* create new mdf files from scratch

* append new channels

¢ read unsorted MDF v2, v3 and v4 files

» filter a subset of channels from original mdf file

* cut measurement to specified time interval

* convert to different mdf version

* export to Excel, HDF5, Matlab and CSV

* merge multiple files sharing the same internal structure

¢ read and save mdf version 4.10 files containing zipped data blocks

* disk space savings by compacting 1-dimensional integer channels (configurable)

« full support (read, append, save) for the following map types (multidimensional array channels):
— mdf version 3 channels with CDBLOCK
— mdf version 4 structure channel composition

— mdf version 4 channel arrays with CNTemplate storage and one of the array types:

asammdf Documentation, Release 3.0.0

% 0 - array
* | - scaling axis
% 2 - look-up
¢ add and extract attachments for mdf version 4
* files are loaded in RAM for fast operations
* handle large files (exceeding the available RAM) using memory = minimum argument

* extract channel data, master channel and extra channel information as Signal objects for unified operations with
v3 and v4 files

* time domain operation using the Signal class
— Pandas data frames are good if all the channels have the same time based
— usually a measurement will have channels from different sources at different rates

— the Signal class facilitates operations with such channels

1.3 Major features not implemented (yet)

* for version 3

— functionality related to sample reduction block (but the class is defined)
* for version 4

— handling of bus logging measurements

— handling of unfinnished measurements (mdf 4)

— full support for remaining mdf 4 channel arrays types

— xml schema for TXBLOCK and MDBLOCK

— partial conversions

— event blocks

— channels with default X axis

— chanenls with reference to attachment

1.4 Dependencies

asammdf uses the following libraries
e numpy : the heart that makes all tick
* numexpr : for algebraic and rational channel conversions
» matplotlib : for Signal plotting
* wheel : for installation in virtual environments
* pandas : for DataFrame export
optional dependencies needed for exports

* h5py : for HDF5 export

4 Chapter 1. Introduction

asammdf Documentation, Release 3.0.0

* xlIsxwriter : for Excel export
e scipy : for Matlab .mat export
other optional dependencies

* chardet : to detect non-standard unicode encodings

1.5 Installation

asammdf is available on
e github: https://github.com/danielhrisca/asammdf/

» PyPI: https://pypi.org/project/asammdf/

pip install asammdf

1.5. Installation 5

https://github.com/danielhrisca/asammdf/
https://pypi.org/project/asammdf/

asammdf Documentation, Release 3.0.0

6 Chapter 1. Introduction

CHAPTER 2

API

2.1 MDF

This class acts as a proxy for the MDF2, MDF3 and MDF4 classes. All attribute access is delegated to the underlying
_mdjf attribute (MDF2, MDF3 or MDF4 object). See MDF3 and MDF4 for available extra methods (MDF2 and MDF3
share the same implementation).

An empty MDF file is created if the name argument is not provided. If the name argument is provided then the file
must exist in the filesystem, otherwise an exception is raised.

The best practice is to use the MDF as a context manager. This way all resources are released correctly in case of
exceptions.

with MDF (r'test.mdf') as mdf_file:
do something

class asammdf.mdf .MDF (name=None, memory="full’, version="4.10")
Unified access to MDF v3 and v4 files. Underlying _mdf’s attributes and methods are linked to the MDF object
via setattr. This is done to expose them to the user code and for performance considerations.

Parameters name : string
mdf file name, if provided it must be a real file name
memory : str
memory option; default full:
* if full the data group binary data block will be loaded in RAM

* if Jow the channel data is read from disk on request, and the metadata is loaded into
RAM

e if minimum only minimal data is loaded into RAM

version : string

asammdf Documentation, Release 3.0.0

mdf file version from (‘2.00’, 2.10°, ‘2.14’, 3.00°, ‘3.10°, ‘3.20°, ‘3.30’, ‘4.00°, ‘4.10°,
‘4.11°); default ‘4.10°

convert (fo, memory="full’)
convert MDF to other version

Parameters to : str

new mdf file version from (‘2.00°, ‘2.10°, 2.14°, ‘3.00’, ‘3.10’, ‘3.20°, ‘3.30°, ‘4.00’,
‘4.10°, ‘4.11’); default ‘4.10°

memory : str
memory option; default full
Returns out : MDF
new MDF object

cut (start=None, stop=None, whence=0)

cut MDF file. start and stop limits are absolute values or values relative to the first timestamp depending
on the whence argument.

Parameters start : float
start time, default None. If None then the start of measurement is used
stop : float
stop time, default None. If None then the end of measurement is used
whence : int
how to search for the start and stop values
* 0: absolute
* 1 : relative to first timestamp
Returns out : MDF
new MDF object

export (fint, filename=None)
export MDF to other formats. The MDF file name is used is available, else the filename aragument must
be provided.

Parameters fmt : string
can be one of the following:

* csv : CSV export that uses the ““;” delimiter. This option will generate a new csv file
for each data group (<MDFNAME>_DataGroup_<cntr>.csv)

* hdf5 : HDFS file output; each MDF data group is mapped to a HDF5 group with the
name ‘DataGroup_<cntr>" (where <cntr> is the index)

* excel : Excel file output (very slow). This option will generate a new excel file for
each data group (<MDFNAME>_DataGroup_<cntr>.xIsx)

* mat : Matlab .mat version 5 export, for Matlab >= 7.6. In the mat file the channels
will be renamed to ‘DataGroup_<cntr>_<channel name>’. The channel group master
will be renamed to ‘DataGroup_<cntr>_<channel name>_master’ (<cntr> is the data
group index starting from 0)

filename : string

8 Chapter 2. API

asammdf Documentation, Release 3.0.0

export file name

filter (channels, memory="full’)
return new MDF object that contains only the channels listed in channels argument

Parameters channels : list
list of items to be filtered; each item can be :
* achannel name string
* (channel name, group index, channel index) list or tuple
* (channel name, group index) list or tuple
* (None, group index, channel index) Isit or tuple
memory : str
memory option for filtered MDF'; default full
Returns mdf : MDF
new MDF file

Examples

>>>
>>>
>>>
>>>
>>>
>>>

>>>
>>>

from asammdf import MDF, Signal

import numpy as np

t = np.arange (5)

s = np.ones(5)

mdf = MDF ()

for i in range(4):
sigs = [Signal (s (ix10+3j), t, name='SIG') for j in range(l,4)]
mdf . append (sigs)

filtered = mdf.filter(['SIG', ('siG', 3, 1), ['SIG', 2], (None, 1, 2)1)
for gp_nr, ch_nr in filtered.channels_db['SIG']:
print (filtered.get (group=gp_nr, index=ch_nr))

<Signal SIG:

samples=[1. 1. 1. 1. 1.1
timestamps=[0 1 2 3 4]

unit:" n

info=None

comment="">

<Signal SIG:

samples=[31. 31. 31. 31. 31.]
timestamps=[0 1 2 3 4]

unit:ll n

info=None

comment="">

<Signal SIG:

samples=[21. 21. 21. 21. 21.]
timestamps=[0 1 2 3 4]

unit:" n

info=None

comment="">

<Signal SIG:

samples=[12. 12. 12. 12. 12.]
timestamps=[0 1 2 3 4]

2.1. MDF

asammdf Documentation, Release 3.0.0

unit=""
info=None
comment="">

iter_channels (skip_master=True)
generator that yields a Signal for each non-master channel

Parameters skip_master : bool
do not yield master channels; default True

iter_groups ()
generator that yields channel groups as pandas DataFrames

static merge (files, outversion="4.10", memory="full’)

merge several files and return the merged MDF object. The files must have the same internal structure
(same number of groups, and same channels in each group)

Parameters files : list | tuple
list of MDF file names or MDF instances
outversion : str
merged file version
memory : str
memory option; default full
Returns merged : MDF
new MDF object with merged channels
Raises MdfException : if there are inconsistencies between the files
merged MDF object

resample (raster, memory="full’)
resample all channels using the given raster

Parameters raster : float
time raster is seconds
memory : str
memory option; default None
Returns mdf : MDF
new MDF with resampled channels

select (channels, dataframe=False)
retreiv the channels listed in channels argument as Signal objects

Parameters channels : list
list of items to be filtered; each item can be :
* achannel name string
* (channel name, group index, channel index) list or tuple
* (channel name, group index) list or tuple

* (None, group index, channel index) Isit or tuple

10 Chapter 2. API

asammdf Documentation, Release 3.0.0

dataframe: bool

return a pandas DataFrame instead of a list of Signals; in this case the signals will be
interpolated using the union of all timestamps

Returns signals : list

list of Signal objects based on the input channel list

Examples

>>>
>>>
>>>
>>>
>>>
>>>

from asammdf import MDF,
import numpy as np

= np.arange (5)
np.ones (5)

mdf = MDF ()

i in range(4):

sigs = [Signal (s (i%x10+73),
mdf . append(sigs)

samples=[1. 1. 1. 1.
timestamps=[0 1 2 3 4]
unit:" n

info=None

comment="">

, <Signal SIG:

31.
4]

samples=[31. 31.
timestamps=[0 1 2 3
unit:" n

info=None
comment="">

, <Signal SIG:

21.
4]

samples=[21. 21.
timestamps=[0 1 2 3
unit:" n

info=None
comment="">

, <Signal SIG:

samples=[12. 12. 12.
timestamps=[0 1 2 3 4]
unit:" n

info=None

comment="">

Signal

t,

>>> mdf.select(['SIG', ('SIiG', 3, 1), ['sSIG', 21,
[<Signal SIG:

31.

21.

12.

name='SIG') for j in range(l,4)]

>>> # select SIG group 0 default index 1 default, SIG group 3 index 1, SIG_
—group 2 index 1 default and channel index 2 from group 1

(None, 1, 2)1])

31.]

21.]

12.]

whereis (channel)
get ocurrences of channel name in the file

Parameters channel : str

channel name string

Returns ocurrences : tuple

2.1. MDF

11

asammdf Documentation, Release 3.0.0

Examples

>>> mdf = MDF (file_name)

>>> mdf.whereis ('VehicleSpeed') # "VehicleSpeed" exists in the file
(1, 2), (2, 4))

>>> mdf.whereis ('VehicleSPD') # "VehicleSPD" doesn't exist in the file
()

2.2 MDF3

asammdf tries to emulate the mdf structure using Python builtin data types.
The header attibute is an OrderedDict that holds the file metadata.
The groups attribute is a dictionary list with the following keys:
* data_group : DataGroup object
* channel_group : ChannelGroup object
* channels : list of Channel objects with the same order as found in the mdf file
* channel_conversions : list of ChannelConversion objects in 1-to-1 relation with the channel list
* channel_sources : list of Sourcelnformation objects in 1-to-1 relation with the channels list
* chanel_dependencies : list of ChannelDependency objects in a 1-to-1 relation with the channel list
* data_block : DataBlock object
* texts : dictionay containing TextBlock objects used throughout the mdf
— channels : list of dictionaries that contain TextBlock objects ralated to each channel
* long_name_addr : channel long name
% comment_addr : channel comment
* display_name_addr : channel display name
— channel group : list of dictionaries that contain TextBlock objects ralated to each channel group

% comment_addr : channel group comment

— conversion_tab : list of dictionaries that contain TextBlock objects ralated to VATB and VTABR channel

conversions
+ text_{n} : n-th text of the VTABR conversion
* sorted : bool flag to indicate if the source file was sorted; it is used when memory is low or minimum
* size : data block size; used for lazy laoding of measured data
¢ record_size : dict of record ID -> record size pairs

The file_history attribute is a TextBlock object.

The channel_db attibute is a dictionary that holds the (data group index, channel index) pair for all signals. This is

used to speed up the get_signal_by_name method.

The master_db attibute is a dictionary that holds the channel index of the master channel for all data groups. This is

used to speed up the ger_signal_by_name method.

12 Chapter 2. API

asammdf Documentation, Release 3.0.0

class asammdf.mdf_v3.MDF3 (name=None, memory="full’, version="3.30")
If the name exist it will be loaded otherwise an empty file will be created that can be later saved to disk

Parameters name : string
mdf file name
memory : str
memory optimization option; default full
* if full the data group binary data block will be memorised in RAM

¢ if Jow the channel data is read from disk on request, and the metadata is memorised
into RAM

e if minimum only minimal data is memorised into RAM
version : string

mdf file version (‘2.00°, 2.10°, 2.14°, ‘3.00°, *3.10°, ‘3.20 or ‘3.30’); default ‘3.30’

Attributes
chan- (dict) used for fast channel access by name; for each name key the value is a list of (group
nels_db index, channel index) tuples
file_history | (TextBlock) file history text block; can be None
groups (list) list of data groups
header (HeaderBlock) mdf file header
identifica- | (FileldentificationBlock) mdf file start block
tion
mas- (dict) used for fast master channel access; for each group index key the value is the master
ters_db channel index
memory (str) memory optimization option
name (string) mdf file name
version (str) mdf version

add_trigger (group, timestamp, pre_time=0, post_time=0, comment="")
add trigger to data group

Parameters group : int
group index
timestamp : float
trigger time
pre_time : float
trigger pre time; default O
post_time : float
trigger post time; default O
comment : str

trigger comment

2.2. MDF3 13

asammdf Documentation, Release 3.0.0

append (signals, acquisition_info="Python’, common_timebase="False)
Appends a new data group.

For channel dependencies type Signals, the samples attribute must be a numpy.recarray
Parameters signals : list
list on Signal objects
acquisition_info : str
acquisition information; default ‘Python’
common_timebase : bool

flag to hint that the signals have the same timebase

Examples

>>> # case 1 conversion type None
>>> sl = np.array([1l, 2, 3, 4, 5])
>>> s2 = np.array([-1, -2, -3, -4, -5])

>>> s3 = np.array([0.1, 0.04, 0.09, 0.16, 0.25])

>>> t = np.array([0.001, 0.002, 0.003, 0.004, 0.005])

>>> names = ['Positive', 'Negative', 'Float']

>>> units = ['+', '-', '.f']

>>> info = {}

>>> sl = Signal (samples=sl, timstamps=t, unit='+', name='Positive')
>>> s2 = Signal (samples=s2, timstamps=t, unit='-', name='Negative')
>>> g3 = Signal (samples=s3, timstamps=t, unit='flts', name='Floats')

>>> mdf = MDF3('new.mdf")

>>> mdf.append([sl, s2, s3], 'created by asammdf v1.1.0")

>>> # case 2: VTAB conversions from channels inside another file
>>> mdfl = MDF3('in.mdf")

>>> chl = mdfl.get ("Channell VTAB")

>>> ch2 = mdfl.get ("Channel2 VTABR")

>>> sigs = [chl, ch2]

>>> mdf2 = MDF3('out.mdf'")

>>> mdf2.append(sigs, 'created by asammdf v1.1.0")

close ()
if the MDF was created with memory="minimum’ and new channels have been appended, then this must
be called just before the object is not used anymore to clean-up the temporary file

configure (read_fragment_size=None, write_fragment_size=None)
configure read and write fragment size for chuncked data access

Parameters read_fragment_size : int

size hint of splitted data blocks, default 8MB; if the initial size is smaller, then no data
list is used. The actual split size depends on the data groups’ records size

write_fragment_size : int

size hint of splitted data blocks, default 8MB; if the initial size is smaller, then no data
list is used. The actual split size depends on the data groups’ records size

extend (index, signals)
Extend a group with new samples. The first signal is the master channel’s samples, and the next signals
must respect the same order in which they were appended. The samples must have raw or physical values
according to the Signals used for the initial append.

14 Chapter 2. API

asammdf Documentation, Release 3.0.0

Parameters index : int
group index
signals : list

list on numpy.ndarray objects

Examples

>>> # case 1 conversion type None
>>> sl = np.array([1l, 2, 3, 4, 51)
>>> s2 = np.array([-1, -2, -3, -4, -51)

>>> s3 = np.array([0.1, 0.04, 0.09, 0.16, 0.25])

>>> t = np.array([0.001, 0.002, 0.003, 0.004, 0.0051)

>>> names = ['Positive', 'Negative', 'Float']

>>> units = ['+', '-', '".f']

>>> sl = Signal (samples=sl, timstamps=t, unit='+', name='Positive')
>>> g2 = Signal (samples=s2, timstamps=t, unit='-"', name='Negative')
>>> g3 = Signal (samples=s3, timstamps=t, unit='flts', name='Floats"')

>>> mdf = MDF3('new.mdf")

>>> mdf.append([sl, s2, s3], 'created by asammdf v1.1.0")
>>> t = np.array([0.006, 0.007, 0.008, 0.009, 0.0101])

>>> mdf2.extend (0, [t, sl, s2, s3])

get (name=None, group=None, index=None, raster=None, samples_only=False, data=None,

raw=False)
Gets channel samples. Channel can be specified in two ways:

* using the first positional argument name

— if there are multiple occurances for this channel then the group and index arguments can be used
to select a specific group.

— if there are multiple occurances for this channel and either the group or index arguments is None
then a warning is issued

¢ using the group number (keyword argument group) and the channel number (keyword argument in-
dex). Use info method for group and channel numbers

If the raster keyword argument is not None the output is interpolated accordingly.
Parameters name : string
name of channel
group : int
0-based group index
index : int
0-based channel index
raster : float
time raster in seconds
samples_only : bool
if True return only the channel samples as numpy array; if False return a Signal object

data : bytes

2.2,

MDF3 15

asammdf Documentation, Release 3.0.0

prevent redundant data read by providing the raw data group samples
raw : bool
return channel samples without appling the conversion rule; default False
Returns res : (numpy.array | Signal)

returns Signal if samples_only*=*False (default option), otherwise returns
numpy.array. The Signal samples are:

* numpy recarray for channels that have CDBLOCK or BYTEARRAY type channels
* numpy array for all the rest
Raises MdfException :
* if the channel name is not found
* if the group index is out of range

* if the channel index is out of range

Examples

>>> from asammdf import MDF, Signal

>>> import numpy as np

>>> t = np.arange (5)

>>> s = np.ones(5)

>>> mdf = MDF (version='3.30")

>>> for i in range (4):
sigs = [Signal (s (ix10+7j), t, name='Sig') for j in range(l, 4)]
mdf . append (sigs)

>>> # first group and channel index of the specified channel name

>>> mdf.get ('Sig'")
UserWarning: Multiple occurances for channel "Sig". Using first occurance_
—from data group 4. Provide both "group" and "index" arguments to select,
—another data group
<Signal Sig:

samples=[1. 1. 1. 1. 1.1

timestamps=[0 1 2 3 4]

unit=""

info=None

comment="">
>>> # first channel index in the specified group

>>> mdf.get ('Sig', 1)
<Signal Sig:
samples=[11. 11. 11. 11. 11.]
timestamps=[0 1 2 3 4]
unit=""
info=None
comment="">
>>> # channel named Sig from group 1 channel index 2

>>> mdf.get ('Sig', 1, 2)
<Signal Sig:
samples=[12. 12. 12. 12. 12.]

16

Chapter 2. API

asammdf Documentation, Release 3.0.0

timestamps=[0 1 2 3 4]
unit:" "
info=None
comment="">
>>> # channel index 1 or group 2

>>> mdf.get (None, 2, 1)
<Signal Sig:
samples=[21. 21. 21.
timestamps=[0 1 2 3 4]
unit=""
info=None
comment="">
>>> mdf.get (group=2, index=1)
<Signal Sig:
samples=[21. 21. 21.
timestamps=[0 1 2 3 4]
unit=""
info=None
comment="">

21.

21.

21.

21.

get_channel_comment (name=None, group=None, index=None)

Gets channel comment. Channel can be specified in two ways:

* using the first positional argument name

— if there are multiple occurances for this channel then the group and index arguments can be used

to select a specific group.

— if there are multiple occurances for this channel and either the group or index arguments is None

then a warning is issued

* using the group number (keyword argument group) and the channel number (keyword argument in-
dex). Use info method for group and channel numbers

If the raster keyword argument is not None the output is interpolated accordingly.

Parameters name : string
name of channel
group : int
0-based group index
index : int
0-based channel index
Returns comment : str

found channel comment

get_channel_name (group, index)

Gets channel name.
Parameters group : int
0-based group index
index : int

0-based channel index

2.2,

MDF3

17

asammdf Documentation, Release 3.0.0

Returns name : str
found channel name

get_channel_unit (name=None, group=None, index=None)
Gets channel unit.

Channel can be specified in two ways:
* using the first positional argument name

— if there are multiple occurances for this channel then the group and index arguments can be used
to select a specific group.

— if there are multiple occurances for this channel and either the group or index arguments is None
then a warning is issued

* using the group number (keyword argument group) and the channel number (keyword argument in-
dex). Use info method for group and channel numbers

If the raster keyword argument is not None the output is interpolated accordingly.
Parameters name : string
name of channel
group : int
0-based group index
index : int
0-based channel index
Returns unit : str
found channel unit

get_master (index, data=None, raster=None)
returns master channel samples for given group

Parameters index : int
group index
data : (bytes, int)
(data block raw bytes, fragment offset); default None
raster : float
raster to be used for interpolation; default None
Returns t: numpy.array
master channel samples

info ()
get MDF information as a dict

Examples

>>> mdf = MDF3('test.mdf'")
>>> mdf.info ()

18 Chapter 2. API

asammdf Documentation, Release 3.0.0

iter_get_triggers ()
generator that yields triggers

Returns trigger_info : dict
trigger information with the following keys:
e comment : trigger comment
* time : trigger time
* pre_time : trigger pre time
* post_time : trigger post time
* index : trigger index
* group : data group index of trigger

save (dst=", overwrite=False, compression=0)
Save MDF to dst. If dst is not provided the the destination file name is the MDF name. If overwrite is True
then the destination file is overwritten, otherwise the file name is appended with ‘_<cntr>’, were ‘<cntr>’
is the first counter that produces a new file name (that does not already exist in the filesystem).

Parameters dst : str
destination file name, Default ©’
overwrite : bool
overwrite flag, default False
compression : int

does nothing for mdf version3; introduced here to share the same API as mdf version 4
files

Returns output_file : str

output file name

2.2.1 MDF version 2 & 3 blocks

The following classes implement different MDF version3 blocks.

Channel Class
class asammdf.v2_v3_blocks.Channel (**kargs)
CNBLOCK class derived from dict
The Channel object can be created in two modes:
« using the stream and address keyword parameters - when reading from file
* using any of the following presented keys - when creating a new Channel
The keys have the following meaning:
¢ id - Block type identifier, always “CN”
* block_len - Block size of this block in bytes (entire CNBLOCK)
* next_ch_addr - Pointer to next channel block (CNBLOCK) of this channel group (NIL allowed)
* conversion_addr - Pointer to the conversion formula (CCBLOCK) of this signal (NIL allowed)

2.2. MDF3 19

asammdf Documentation, Release 3.0.0

* source_depend_addr - Pointer to the source-depending extensions (CEBLOCK) of this signal (NIL
allowed)

¢ ch_depend_addr - Pointer to the dependency block (CDBLOCK) of this signal (NIL allowed)
¢ comment_addr - Pointer to the channel comment (TXBLOCK) of this signal (NIL allowed)
* channel_type - Channel type

— 0 = data channel

— 1 = time channel for all signals of this group (in each channel group, exactly one channel must be
defined as time channel). The time stamps recording in a time channel are always relative to the
start time of the measurement defined in HDBLOCK.

* short_name - Short signal name, i.e. the first 31 characters of the ASAM-MCD name of the signal
(end of text should be indicated by 0)

e description - Signal description (end of text should be indicated by 0)

* start_offset - Start offset in bits to determine the first bit of the signal in the data record. The start off-
set N is divided into two parts: a “Byte offset” (= N div 8) and a “Bit offset” (= N mod 8). The channel
block can define an “additional Byte offset” (see below) which must be added to the Byte offset.

¢ bit_count - Number of bits used to encode the value of this signal in a data record

* data_type - Signal data type

* range_flag - Value range valid flag

¢ min_raw_value - Minimum signal value that occurred for this signal (raw value)

¢ max_raw_value - Maximum signal value that occurred for this signal (raw value)

» sampling_rate - Sampling rate for a virtual time channel. Unit [s]

* long_name_addr - Pointer to TXBLOCK that contains the ASAM-MCD long signal name

* display_name_addr - Pointer to TXBLOCK that contains the signal’s display name (NIL allowed)
« aditional_byte_offset - Additional Byte offset of the signal in the data record (default value: 0).

Parameters stream : file handle
mdf file handle
address : int

block address inside mdf file

Examples

>>> with open('test.mdf', 'rb') as mdf:

. chl = Channel (stream=mdf, address=0xBA52)
>>> ch2 = Channel ()

>>> chl.name

'VehicleSpeed'

>>> chl['id'"]

b'CN'

20

Chapter 2. API

asammdf Documentation, Release 3.0.0

Attributes

name (str) full channel name
address (int) block address inside mdf file
dependencies | (list) Isit of channel dependencies

ChannelConversion Class
class asammdf.v2_v3_blocks.ChannelConversion (**kargs)
CCBLOCK class derived from dict
The ChannelConversion object can be created in two modes:
* using the stream and address keyword parameters - when reading from file
» using any of the following presented keys - when creating a new ChannelConversion

The first keys are common for all conversion types, and are followed by conversion specific keys. The keys have
the following meaning:

e common keys

— id - Block type identifier, always “CC”

block_len - Block size of this block in bytes (entire CCBLOCK)

— range_{flag - Physical value range valid flag:

— min_phy_value - Minimum physical signal value that occurred for this signal
— max_phy_value - Maximum physical signal value that occurred for this signal
— unit - Physical unit (string should be terminated with 0)

— conversion_type - Conversion type (formula identifier)

ref_param_nr - Size information about additional conversion data
* specific keys

linear conversion

% b - offset
% a - factor

* CANapeHiddenExtra - sometimes CANape appends extra information; not compliant with
MDF specs

ASAM formula conversion

* formula - ecuation as string

polynomial or rational conversion

% P1 .. P6 - factors

exponential or logarithmic conversion

% P1 .. P7 - factors

tabular with or without interpolation (grouped by n)

% raw_{n} - n-th raw integer value (X axis)

2.2. MDF3 21

asammdf Documentation, Release 3.0.0

* phys_{n} - n-th physical value (Y axis)
— text table conversion
* param_val_{n} - n-th integers value (X axis)
% text_{n} - n-th text value (Y axis)
— text range table conversion
* lower_{n} - n-th lower raw value
* upper_{n} - n-th upper raw value

text_{n} - n-th text value

Parameters stream : file handle
mdf file handle
address : int

block address inside mdf file

Examples

>>> with open('test.mdf', 'rb') as mdf:

.. ccl = ChannelConversion (stream=mdf, address=0xBA52)
>>> cc2 = ChannelConversion (conversion_type=0)

>>> ccl['b'], ccl['a']

0, 100.0

Attributes

address \ (int) block address inside mdf file

ChannelDependency Class
class asammdf.v2_v3_blocks.ChannelDependency (**kargs)
CDBLOCK class derived from dict

Currently the ChannelDependency object can only be created using the stream and address keyword parameters
when reading from file

The keys have the following meaning:
¢ id - Block type identifier, always “CD”
* block_len - Block size of this block in bytes (entire CDBLOCK)
* dependency_type - Dependency type
¢ sd_nr - Total number of signals dependencies (m)
 for each dependency there is a group of three keys:
— dg_{n} - Pointer to the data group block (DGBLOCK) of signal dependency n
— cg_{n} - Pointer to the channel group block (DGBLOCK) of signal dependency n

22 Chapter 2. API

asammdf Documentation, Release 3.0.0

— ch_{n} - Pointer to the channel block (DGBLOCK) of signal dependency n
* there can also be optional keys which decribe dimensions for the N-dimensional dependencies:

— dim_{n} - Optional: size of dimension n for N-dimensional dependency

Parameters stream : file handle
mdf file handle
address : int

block address inside mdf file

Attributes

address \ (int) block address inside mdf file

ChannelExtension Class
class asammdf.v2_v3_blocks.ChannelExtension (**kargs)
CEBLOCK class derived from dict
The ChannelExtension object can be created in two modes:
¢ using the stream and address keyword parameters - when reading from file
* using any of the following presented keys - when creating a new ChannelExtension

The first keys are common for all conversion types, and are followed by conversion specific keys. The keys have
the following meaning:

e common keys
— id - Block type identifier, always “CE”
— block_len - Block size of this block in bytes (entire CEBLOCK)
— type - Extension type identifier
* specific keys
— for DIM block
* module_nr - Number of module
+# module_address - Address
description - Description
* ECU_identification - Identification of ECU
x reserved()’ - reserved
— for Vector CAN block
* CANL_id - Identifier of CAN message
* CAN_ch_index - Index of CAN channel
% message_name - Name of message (string should be terminated by 0)

% sender_name - Name of sender (string should be terminated by 0)

2.2. MDF3 23

asammdf Documentation, Release 3.0.0

% reservedO - reserved

Parameters stream : file handle
mdf file handle
address : int

block address inside mdf file

Attributes

| address [(int) block address inside mdf file |

ChannelGroup Class

class asammdf.v2_v3_blocks.ChannelGroup (**kargs)
CGBLOCK class derived from dict

The ChannelGroup object can be created in two modes:

using the stream and address keyword parameters - when reading from file

using any of the following presented keys - when creating a new ChannelGroup

The keys have the following meaning:

L]

id - Block type identifier, always “CG”

block_len - Block size of this block in bytes (entire CGBLOCK)

next_cg_addr - Pointer to next channel group block (CGBLOCK) (NIL allowed)
first_ch_addr - Pointer to first channel block (CNBLOCK) (NIL allowed)
comment_addr - Pointer to channel group comment text (TXBLOCK) (NIL allowed)

record_id - Record ID, i.e. value of the identifier for a record if the DGBLOCK defines a number of
record IDs > 0

ch_nr - Number of channels (redundant information)

samples_byte_nr - Size of data record in Bytes (without record ID), i.e. size of plain data for a each
recorded sample of this channel group

cycles_nr - Number of records of this type in the data block i.e. number of samples for this channel
group
sample_reduction_addr - only since version 3.3. Pointer to first sample reduction block (SRBLOCK)
(NIL allowed) Default value: NIL
Parameters stream : file handle
mdf file handle
address : int

block address inside mdf file

24

Chapter 2. API

asammdf Documentation, Release 3.0.0

Examples

>>> with open('test.mdf', 'rb') as mdf:

. cgl = ChannelGroup (stream=mdf, address=0xBA52)
>>> cg2 = ChannelGroup (sample_bytes_nr=32)

>>> hex (cgl.address)

0xBAb52

>>> cgl['id']

b'CG'

Attributes

| address | (int) block address inside mdf file |

DataGroup Class
class asammdf.v2_v3_blocks.DataGroup (**kargs)
DGBLOCK class derived from dict
The DataGroup object can be created in two modes:
« using the stream and address keyword parameters - when reading from file
* using any of the following presented keys - when creating a new DataGroup
The keys have the following meaning:
¢ id - Block type identifier, always “DG”
* block_len - Block size of this block in bytes (entire DGBLOCK)
* next_dg_addr - Pointer to next data group block (DGBLOCK) (NIL allowed)
* first_cg_addr - Pointer to first channel group block (CGBLOCK) (NIL allowed)
e trigger_addr - Pointer to trigger block (TRBLOCK) (NIL allowed)
 data_block_addr - Pointer to the data block (see separate chapter on data storage)
e cg_nr - Number of channel groups (redundant information)
e record_id_nr - Number of record IDs in the data block

¢ reservedO - since version 3.2; Reserved

Parameters stream : file handle
mdf file handle
address : int

block address inside mdf file

Attributes

address \ (int) block address inside mdf file ‘

2.2. MDF3 25

asammdf Documentation, Release 3.0.0

FileldentificationBlock Class
class asammdf.v2_v3_blocks.FileIdentificationBlock (**kargs)
IDBLOCK class derived from dict
The TriggerBlock object can be created in two modes:
« using the stream and address keyword parameters - when reading from file
* using the classmethod from_text
The keys have the following meaning:
¢ file_identification - file identifier
* version_str - format identifier
e program_identification - program identifier
* byte_order - default byte order
¢ float_format - default floating-point format
e mdf version - version number of MDF format
* code_page - code page number
* reservedO - reserved
* reservedl - reserved
» unfinalized_standard_flags - Standard Flags for unfinalized MDF

* unfinalized_custom_flags - Custom Flags for unfinalized MDF

Parameters stream : file handle
mdf file handle
version : int

mdf version in case of new file

Attributes

address \ (int) block address inside mdf file; should be 0 always

HeaderBlock Class
class asammdf.v2_v3_blocks.HeaderBlock (**kargs)
HDBLOCK class derived from dict
The TriggerBlock object can be created in two modes:
* using the stream - when reading from file
¢ using the classmethod from_text
The keys have the following meaning:
¢ id - Block type identifier, always “HD”
* block_len - Block size of this block in bytes (entire HDBLOCK)

26

Chapter 2. API

asammdf Documentation, Release 3.0.0

* first_dg_addr - Pointer to the first data group block (DGBLOCK)

¢ comment_addr - Pointer to the measurement file comment text (TXBLOCK) (NIL allowed)

e program_addr - Pointer to program block (PRBLOCK) (NIL allowed)
* dg_nr - Number of data groups (redundant information)
e date - Date at which the recording was started in “DD:MM:YYYY” format
* time - Time at which the recording was started in “HH:MM:SS” format
e author - author name
* organization - organization
* project - project name
* subject - subject
Since version 3.2 the following extra keys were added:
 abs_time - Time stamp at which recording was started in nanoseconds.
e tz_offset - UTC time offset in hours (= GMT time zone)
* time_quality - Time quality class

e timer_identification - Timer identification (time source),

Parameters stream : file handle

mdf file handle

Attributes

’ address \ (int) block address inside mdf file; should be 64 always

ProgramBlock Class
class asammdf.v2_v3_blocks.ProgramBlock (**kargs)
PRBLOCK class derived from dict
The ProgramBlock object can be created in two modes:
« using the stream and address keyword parameters - when reading from file
* using any of the following presented keys - when creating a new ProgramBlock
The keys have the following meaning:
¢ id - Block type identifier, always “PR”
¢ block_len - Block size of this block in bytes (entire PRBLOCK)

e data - Program-specific data

Parameters stream : file handle
mdf file handle
address : int

block address inside mdf file

2.2. MDF3

27

asammdf Documentation, Release 3.0.0

Attributes

address \ (int) block address inside mdf file

SampleReduction Class

class asammdf.v2_v3_blocks.SampleReduction (**kargs)
SRBLOCK class derived from dict

Currently the SampleReduction object can only be created by using the stream and address keyword parameters

- when reading from file
The keys have the following meaning:
¢ id - Block type identifier, always “SR”
* block_len - Block size of this block in bytes (entire SRBLOCK)
¢ next_sr_addr - Pointer to next sample reduction block (SRBLOCK) (NIL allowed)
* data_block_addr - Pointer to the data block for this sample reduction
 cycles_nr - Number of reduced samples in the data block.

* time_interval - Length of time interval [s] used to calculate the reduced samples.

Parameters stream : file handle
mdf file handle
address : int

block address inside mdf file

Attributes

address \ (int) block address inside mdf file

TextBlock Class
class asammdf.v2_v3_blocks.TextBlock (**kargs)
TXBLOCK class derived from dict
The ProgramBlock object can be created in two modes:
¢ using the stream and address keyword parameters - when reading from file
e using the classmethod from_text
The keys have the following meaning:
¢ id - Block type identifier, always “TX”
* block_len - Block size of this block in bytes (entire TXBLOCK)

e text - Text (new line indicated by CR and LF; end of text indicated by 0)

Parameters stream : file handle

28

Chapter 2. API

asammdf Documentation, Release 3.0.0

mdf file handle
address : int

block address inside mdf file
text : bytes

bytes for creating a new TextBlock

Examples

>>> tx1 = TextBlock.from_text ('VehicleSpeed")
>>> txl.text_str

'VehicleSpeed'

>>> tx1['text']

b'VehicleSpeed'

Attributes

address | (int) block address inside mdf file
text_str | (str) text data as unicode string

TriggerBlock Class

class asammdf.v2_v3_blocks.TriggerBlock (**kargs)
TRBLOCK class derived from dict

The TriggerBlock object can be created in two modes:

L]

using the stream and address keyword parameters - when reading from file

using the classmethod from_text

The keys have the following meaning:

L]

id - Block type identifier, always “TR”

block_len - Block size of this block in bytes (entire TRBLOCK)
text_addr - Pointer to trigger comment text (TXBLOCK) (NIL allowed)
trigger_events_nr - Number of trigger events n (0 allowed)
trigger_{n}_time - Trigger time [s] of trigger event n
trigger_{n}_pretime - Pre trigger time [s] of trigger event n

trigger_{n}_posttime - Post trigger time [s] of trigger event n

Parameters stream : file handle
mdf file handle
address : int

block address inside mdf file

2.2. MDF3

29

asammdf Documentation, Release 3.0.0

2.3

Attributes

address \ (int) block address inside mdf file

MDF4

asammdf tries to emulate the mdf structure using Python builtin data types.

The header attibute is an OrderedDict that holds the file metadata.

The groups attribute is a dictionary list with the following keys:

data_group : DataGroup object
channel_group : ChannelGroup object
channels : list of Channel objects with the same order as found in the mdf file
channel_conversions : list of ChannelConversion objects in 1-to-1 relation with the channel list
channel_sources : list of Sourcelnformation objects in 1-to-1 relation with the channels list
data_block : DataBlock object
texts : dictionay containing TextBlock objects used throughout the mdf
— channels : list of dictionaries that contain TextBlock objects ralated to each channel
+ name_addr : channel name
* comment_addr : channel comment
— channel group : list of dictionaries that contain TextBlock objects ralated to each channel group
* acq_name_addr : channel group acquisition comment
* comment_addr : channel group comment

— conversion_tab : list of dictionaries that contain TextBlock objects related to TABX and RTABX channel
conversions

+ text_{n} : n-th text of the VTABR conversion
% default_addr : default text
— conversions : list of dictionaries that containt TextBlock obejcts related to channel conversions
+ name_addr : converions name
unit_addr : channel unit_addr
% comment_addr : converison comment
% formula_addr : formula text; only valid for algebraic conversions
— sources : list of dictionaries that containt TextBlock obejcts related to channel sources
+ name_addr : source name
% path_addr : source path_addr

* comment_addr : source comment

30

Chapter 2. API

asammdf Documentation, Release 3.0.0

The file_history attribute is a list of (FileHistory, TextBlock) pairs .

The channel_db attibute is a dictionary that holds the (data group index, channel index) pair for all signals. This is
used to speed up the get_signal_by_name method.

The master_db attibute is a dictionary that holds the channel index of the master channel for all data groups. This is
used to speed up the ger_signal_by_name method.

class asammdf.mdf_v4 .MDF4 (name=None, memory="full’, version="4.10")

If the name exist it will be memorised otherwise an empty file will be created that can be later saved to disk
Parameters name : string
mdf file name
memory : str
memory optimization option; default full
* if full the data group binary data block will be memorised in RAM

* if low the channel data is read from disk on request, and the metadata is memorized
into RAM

* if minimum only minimal data is memorized into RAM
version : string

mdf file version (‘4.00’, ‘4.10°, ‘4.11°); default ‘4.10’

Attributes
attach- (list) list of file attachments
ments
chan- (dict) used for fast channel access by name; for each name key the value is a list of (group
nels_db index, channel index) tuples

file_comment(TextBlock) file comment TextBlock

file_history | (list) list of (FileHistory, TextBlock) pairs

groups (list) list of data groups

header (HeaderBlock) mdf file header

identifica- | (FileIdentificationBlock) mdf file start block

tion

mas- (dict) used for fast master channel access; for each group index key the value is the master
ters_db channel index

memory (str) memory optimization option

name (string) mdf file name

version (str) mdf version

append (signals, source_info="Python’, common_timebase=False)
Appends a new data group.

For channel dependencies type Signals, the samples attribute must be a numpy.recarray
Parameters signals : list
list on Signal objects
source_info : str

source information; default ‘Python’

23.

MDF4 31

asammdf Documentation, Release 3.0.0

common_timebase : bool

flag to hint that the signals have the same timebase

Examples

>>> # case 1 conversion type None

>>> sl = np.array([1l, 2, 3, 4, 51)

>>> s2 = np.array([-1, -2, -3, -4, -5])

>>> s3 = np.array([0.1, 0.04, 0.09, 0.16, 0.25])

>>> t = np.array([0.001, 0.002, 0.003, 0.004, 0.0051)

>>> names = ['Positive', 'Negative', 'Float']

>>> units = ['+', '-"', '".f']

>>> info = {}

>>> sl = Signal (samples=sl, timstamps=t, unit='+', name='Positive')
>>> 52 = Signal (samples=s2, timstamps=t, unit='-', name='Negative')
>>> 53 = Signal (samples=s3, timstamps=t, unit='flts', name='Floats')

>>> mdf = MDF3('new.mdf")

>>> mdf.append([sl, s2, s3], 'created by asammdf v1.1.0")

>>> # case 2: VTAB conversions from channels inside another file
>>> mdfl = MDF3('in.mdf")

>>> chl = mdfl.get ("Channell VTAB")

>>> ch2 = mdfl.get ("Channel2 VTABR")

>>> sigs = [chl, ch2]

>>> mdf2 = MDF3 ('out.mdf'")

>>> mdf2.append(sigs, 'created by asammdf v1.1.0")

attach (data, file_name=None, comment=None, compression=True, mime="application/octet-

stream’) o
attach embedded attachment as application/octet-stream

Parameters data : bytes
data to be attached
file_name : str
string file name
comment : str
attachment comment
compression : bool
use compression for embedded attachment data
mime : str
mime type string

close ()
if the MDF was created with memory=False and new channels have been appended, then this must be
called just before the object is not used anymore to clean-up the temporary file

configure (read_fragment_size=None, write_fragment_size=None)
configure read and write fragment size for chuncked data access

Parameters read_fragment_size : int

size hint of splitted data blocks, default SMB; if the initial size is smaller, then no data
list is used. The actual split size depends on the data groups’ records size

32 Chapter 2. API

asammdf Documentation, Release 3.0.0

write_fragment_size : int

size hint of splitted data blocks, default SMB; if the initial size is smaller, then no data
list is used. The actual split size depends on the data groups’ records size

extend (index, signals)
Extend a group with new samples. The first signal is the master channel’s samples, and the next signals
must respect the same order in which they were appended. The samples must have raw or physical values
according to the Signals used for the initial append.

Parameters index : int
group index
signals : list

list on numpy.ndarray objects

Examples

>>> # case 1 conversion type None
>>> sl = np.array([1l, 2, 3, 4, 5])
>>> s2 = np.array([-1, -2, -3, -4, -5])

>>> s3 = np.array([(0.1, 0.04, 0.09, 0.16, 0.25])

>>> t = np.array([0.001, 0.002, 0.003, 0.004, 0.0051])

>>> names = ['Positive', 'Negative', 'Float']

>>> units = ['+', '-', ".f']

>>> sl = Signal (samples=sl, timstamps=t, unit='+', name='Positive')

>>> 52 = Signal (samples=s2, timstamps=t, unit='-', name='Negative')

>>> 53 = Signal (samples=s3, timstamps=t, unit='flts', name='Floats')

>>> mdf = MDF3('new.mdf")

>>> mdf.append([sl, s2, s3], 'created by asammdf v1.1.0")
>>> t = np.array([0.006, 0.007, 0.008, 0.009, 0.0101)

>>> mdf2.extend (0, [t, sl, s2, s3])

extract_attachment (index)
extract attachment index data. If it is an embedded attachment, then this method creates the new file

according to the attachment file name information
Parameters index : int
attachment index
Returns data : bytes | str
attachment data

get (name=None, group=None, index=None, raster=None, samples_only=False, data=None,

raw=Fualse)
Gets channel samples. Channel can be specified in two ways:

* using the first positional argument name

— if there are multiple occurances for this channel then the group and index arguments can be used
to select a specific group.

— if there are multiple occurances for this channel and either the group or index arguments is None
then a warning is issued

¢ using the group number (keyword argument group) and the channel number (keyword argument in-
dex). Use info method for group and channel numbers

23.

MDF4 33

asammdf Documentation, Release 3.0.0

If the raster keyword argument is not None the output is interpolated accordingly
Parameters name : string
name of channel
group : int
0-based group index
index : int
0-based channel index
raster : float
time raster in seconds
samples_only : bool

if True return only the channel samples as numpy array; if False return a Signal
object

data : bytes
prevent redundant data read by providing the raw data group samples
raw : bool
return channel samples without appling the conversion rule; default False
Returns res : (numpy.array | Signal)

returns Signal if samples_only = False (default option), otherwise returns numpy.array
The Signal samples are:

* numpy recarray for channels that have composition/channel array address or for chan-
nel of type CANOPENDATE, CANOPENTIME

* numpy array for all the rest
Raises MdfException :
* if the channel name is not found
* if the group index is out of range

* if the channel index is out of range

Examples

>>> from asammdf import MDF, Signal

>>> import numpy as np

>>> t = np.arange (5)

>>> s = np.ones|(5H)

>>> mdf = MDF (version='4.10")

>>> for i in range(4):
sigs = [Signal(s*(ix10+3j), t, name='Sig') for j in range(l, 4)]
mdf . append (sigs)

>>> # first group and channel index of the specified channel name
>>> mdf.get ('Sig')

UserWarning: Multiple occurances for channel "Sig". Using first occurance_
—from data group 4. Provide both "group" and "index" arguments to select,

—another data group

34 Chapter 2. API

asammdf Documentation, Release 3.0.0

<Signal Sig:
samples=[1. 1. 1. 1. 1.1
timestamps=[0 1 2 3 4]
unit=""
info=None
comment="">
>>> # first channel index in the specified group

>>> mdf.get ('Sig', 1)
<Signal Sig:
samples=[11. 11. 11. 11. 11.]
timestamps=[0 1 2 3 4]
unit=""
info=None
comment="">
>>> # channel named Sig from group 1 channel index 2

>>> mdf.get ('Sig', 1, 2)
<Signal Sig:
samples=[12. 12. 12. 12. 12.1]
timestamps=[0 1 2 3 4]
unit=""
info=None
comment="">
>>> # channel index 1 or group 2

>>> mdf.get (None, 2, 1)
<Signal Sig:
samples=[21. 21. 21. 21. 21.]
timestamps=[0 1 2 3 4]
unit=""
info=None
comment="">
>>> mdf.get (group=2, index=1)
<Signal Sig:
samples=[21. 21. 21. 21. 21.]
timestamps=[0 1 2 3 4]
unit=""
info=None
comment="">

get_channel_comment (name=None, group=None, index=None)
Gets channel comment.

Channel can be specified in two ways:

* using the first positional argument name

— if there are multiple occurrences for this channel then the group and index arguments can be used

to select a specific group.

— if there are multiple occurrences for this channel and either the group or index arguments is None

then a warning is issued

* using the group number (keyword argument group) and the channel number (keyword argument in-

dex). Use info method for group and channel numbers
If the raster keyword argument is not None the output is interpolated accordingly.

Parameters name : string

2.3. MDF4

asammdf Documentation, Release 3.0.0

name of channel
group : int
0-based group index
index : int
0-based channel index
Returns comment : str
found channel comment

get_channel_name (group, index)
Gets channel name.

Parameters group : int
0-based group index
index : int
0-based channel index
Returns name : str
found channel name

get_channel_unit (name=None, group=None, index=None)
Gets channel unit.

Channel can be specified in two ways:
* using the first positional argument name

— if there are multiple occurrences for this channel then the group and index arguments can be used
to select a specific group.

— if there are multiple occurrences for this channel and either the group or index arguments is None
then a warning is issued

* using the group number (keyword argument group) and the channel number (keyword argument in-
dex). Use info method for group and channel numbers

If the raster keyword argument is not None the output is interpolated accordingly.
Parameters name : string
name of channel
group : int
0-based group index
index : int
0-based channel index
Returns unit : str
found channel unit

get_master (index, data=None, raster=None)
returns master channel samples for given group

Parameters index : int

group index

36 Chapter 2. API

asammdf Documentation, Release 3.0.0

data : (bytes, int)
(data block raw bytes, fragment offset); default None
raster : float
raster to be used for interpolation; default None
Returns t: numpy.array
master channel samples

get_valid_indexes (group_index, channel, fragment)
get invalidation indexes for the channel

Parameters group_index : int
group index
channel : Channel
channel object
fragment : (bytes, int)
(fragment bytes, fragment offset)
Returns valid_indexes : iterable
iterable of valid channel indexes; if all are valid None is returned

info ()
get MDF information as a dict

Examples

>>> mdf = MDF4 ('test.mdf'")
>>> mdf.info ()

save (dst=", overwrite=False, compression=0)
Save MDF to dst. If dst is not provided the the destination file name is the MDF name. If overwrite is True
then the destination file is overwritten, otherwise the file name is appened with ‘_<cntr>’, were ‘<cntr>’ is
the first conter that produces a new file name (that does not already exist in the filesystem)

Parameters dst : str
destination file name, Default ©’
overwrite : bool
overwrite flag, default False
compression : int
use compressed data blocks, default 0; valid since version 4.10
* 0 - no compression
* 1 - deflate (slower, but produces smaller files)
* 2 - transposition + deflate (slowest, but produces the smallest files)
Returns output_file : str

output file name

23.

MDF4 37

asammdf Documentation, Release 3.0.0

2.3.1 MDF version 4 blocks

The following classes implement different MDF version4 blocks.

AttachmentBlock Class

class asammdf.v4_blocks.AttachmentBlock (**kargs)
ATBLOCK class

When adding new attachments only embedded attachemnts are allowed, with keyword argument data of type
bytes

Channel Class

class asammdf.v4_blocks.Channel (**kargs)
CNBLOCK class

ChannelConversion Class

class asammdf.v4_blocks.ChannelConversion (**kargs)
CCBLOCK class

ChannelGroup Class

class asammdf.v4_blocks.ChannelGroup (**kargs)
CGBLOCK class

DataGroup Class

class asammdf.v4_blocks.DataGroup (**kargs)
DGBLOCK class

DataList Class

class asammdf.v4_blocks.DatalList (**kargs)
DLBLOCK class

DataBlock Class
class asammdf.v4_blocks.DataBlock (**kargs)
DTBLOCK class
Parameters address : int
DTBLOCK address inside the file
stream : int

file handle

38 Chapter 2. API

asammdf Documentation, Release 3.0.0

FileldentificationBlock Class

class asammdf.v4_blocks.FileIdentificationBlock (**kargs)

IDBLOCK class

HeaderBlock Class

class asammdf.v4_blocks.HeaderBlock (**kargs)

HDBLOCK class

Sourcelnformation Class

class asammdf.v4_blocks.SourceInformation (**kargs)

SIBLOCK class

FileHistory Class

class asammdf.v4_blocks.FileHistory (**kargs)

FHBLOCK class

TextBlock Class

class asammdf.v4_blocks.TextBlock (**kargs)
common TXBLOCK and MDBLOCK class

2.4 Signal

class asammdf.signal.Signal (samples=None,

timestamps=None, unit=", name=", conver-
sion=None, comment="", raw=False)

The Signal represents a hannel described by it’s samples and timestamps. It can perform aritmethic operations
agains other Signal or numeric types. The operations are computed in respect to the timestamps (time cor-
rect). The non-float signals are not interpolated, instead the last value relative to the current timestamp is used.

samples, timstamps and name are mandatory arguments.

Parameters samples : numpy.array | list | tuple

signal samples

timestamps : numpy.array | list | tuple

signal timestamps

unit : str
signal unit
name : str
signal name

conversion : dict

dict that contains extra conversionrmation about the signal , default None

comment : str

2.4. Signal

39

asammdf Documentation, Release 3.0.0

signal comment, default *’
raw : bool

signal samples are raw values, with no physical conversion applied

astype (np_type)
returns new Signal with samples of dtype np_type

Parameters np_type : np.dtype
new numpy dtye
Returns signal : Signal
new Signal with the samples of np_type dtype

cut (start=None, stop=None)
Cuts the signal according to the start and stop values, by using the insertion indexes in the signal’s time
axis.

Parameters start : float
start timestamp for cutting
stop : float
stop timestamp for cutting
Returns result : Signal

new Signal cut from the original

Examples

>>> new_sig = old_sig.cut (1.0, 10.5)
>>> new_sig.timestamps[0], new_sig.timestamps|[—1]
0.98, 10.48

extend (other)
extend signal with samples from another signal

Parameters other : Signal
Returns signal : Signal
new extended Signal

interp (new_timestamps)
returns a new Signal interpolated using the new_timestamps

Parameters new_timestamps : np.array
timestamps used for interpolation
Returns signal : Signal
new interpolated Signal

plot ()
plot Signal samples

40 Chapter 2. API

asammdf Documentation, Release 3.0.0

2.5 Notes about the memory argument

By default when the MDF object is created all data is loaded into RAM (memory="full’). This will give you the best
performance from asammdyf.

However if you reach the physical memory limit asammdf gives you two options:
* memory="low’ : only the metadata is loaded into RAM, the raw channel data is loaded when needed

* memory="minimum’ : only minimal data is loaded into RAM.

2.5.1 MDF created with memory="full’

Advantages

* best performance if all channels are used (for example cut, convert, export or merge methods)
Disadvantages

 higher RAM usage, there is the chance of MemoryError for large files

* time can be wasted if only a small number of channels is retreived from the file (for example filter, get or select
methods)

Use case

* when data fits inside the system RAM

2.5.2 MDF created with memory="low’

Advantages

* lower RAM usage than memory="full’

* can handle files that do not fit in the available physical memory

* middle ground between ‘full’ speed and ‘minimum’ memory usage
Disadvantages

* slower performance for retrieving channel data

» must call close method to release the temporary file used in case of appending.

Note: it is advised to use the MDF context manager in this case

Use case
e when ‘full’ data exceeds available RAM
* it is advised to avoid getting individual channels when using this option

* best performance / memory usage ratio when using cut, convert, fiter, merge or select methods

Note: See benchmarks for the effects of using the flag

2.5. Notes about the memory argument 41

asammdf Documentation, Release 3.0.0

2.5.3 MDF created with memory="minimum’

Advantages
* lowest RAM usage
* the only choise when dealing with huge files (10’s of thousands of channels and GB of sample data)
* handle big files on 32 bit Python ()
Disadvantages
* slightly slower performance compared to momeory="low’

» must call close method to release the temporary file used in case of appending.

Note: See benchmarks for the effects of using the flag

42 Chapter 2. API

CHAPTER 3

Tips

3.1 Impact of memory argument

By default when the MDF object is created all data is loaded into RAM (memory="full’). This will give you the best
performance from asammdyf.

However if you reach the physical memory limit asammdf gives you two options:
e memory="low’ : only the metadata is loaded into RAM, the raw channel data is loaded when needed

* memory="minimum’ : only minimal data is loaded into RAM.

3.1.1 MDF created with memory="full’

Advantages

* best performance if all channels are used (for example cut, convert, export or merge methods)
Disadvantages

* higher RAM usage, there is the chance of MemoryError for large files

* data is not accessed in chunks

e time can be wasted if only a small number of channels is retreived from the file (for example filter, get or select
methods)

Use case

* when data fits inside the system RAM

3.1.2 MDF created with memory="low’

Advantages

* lower RAM usage than memory="full’

43

asammdf Documentation, Release 3.0.0

* can handle files that do not fit in the available physical memory

» middle ground between ‘full’ speed and ‘minimum’ memory usage
Disadvantages

* slower performance for retrieving channel data

* must call close method to release the temporary file used in case of appending.

Note: it is advised to use the MDF context manager in this case

Use case
* when ‘full’ data exceeds available RAM
* it is advised to avoid getting individual channels when using this option

* best performance / memory usage ratio when using cut, convert, fiter, merge or select methods

Note: See benchmarks for the effects of using the flag

3.1.3 MDF created with memory="minimum’

Advantages
* lowest RAM usage
* the only choise when dealing with huge files (10’s of thousands of channels and GB of sample data)
* handle big files on 32 bit Python ()
Disadvantages
* slightly slower performance compared to momeory="low’

¢ must call close method to release the temporary file used in case of appending.

Note: See benchmarks for the effects of using the flag

3.2 Chunked data access

When the MDF is created with the option “full” all the samples are loaded into RAM and are processed as a signle
block. For large files this can lead to MemoryError exceptions (for example trying to merge several GB sized files).

asammdf optimizes memory usage for options “low” and “minimum” by processing samples in fragments. The read
fragment size was tuned based on experimental measurements and should give a good compromise between execution
time and memory usage.

You can further tune the read fragment size using the configure method, to favor execution speed (using larger fragment
sizes) or memory usage (using lower fragment sizes).

44 Chapter 3. Tips

asammdf Documentation, Release 3.0.0

3.3 Optimized methods

The MDF methods (cut, filter, select) are optimized and should be used instead of calling get for several channels. For
“low” and “minimum” options the time savings can be dramatic.

3.3. Optimized methods 45

asammdf Documentation, Release 3.0.0

46 Chapter 3. Tips

CHAPTER 4

Examples

4.1 Working with MDF

from _ future import print_function, division
from asammdf import MDF, Signal
import numpy as np

create 3 Signal objects
timestamps = np.array([0.1, 0.2, 0.3, 0.4, 0.5], dtype=np.float32)

unit8

s_uint8 = Signal (samples=np.array ([0, 1, 2, 3, 4], dtype=np.uint8),
timestamps=timestamps,
name='Uint8_Signal',
unit="ul")

int32

s_int32 = Signal (samples=np.array([-20, -10, 0, 10, 20], dtype=np.int32),
timestamps=timestamps,
name='Int32_Signal',
unit="14")

floaté64

s_float64 = Signal (samples=np.array([-20, -10, 0, 10, 20], dtype=np.floato64),
timestamps=timestamps,
name='Float64_Signal',
unit='£f8")

create empty MDf version 4.00 file
mdf4 = MDF (version='4.10")

append the 3 signals to the new file
signals = [s_uint8, s_int32, s_float64]

47

asammdf Documentation, Release 3.0.0

mdf4.append(signals, 'Created by Python')

save new file
mdf4d.save ('my_new_file.mf4d', overwrite=True)

convert new file to mdf version 3.10 with lowest possible RAM usage
mdf3 = mdf4d.convert (to='3.10", memory='minimum')
print (mdf3.version)

get the float signal
sig = mdf3.get ('Float64_Signal')
print (sig)

cut measurement from 0.3s to end of measurement
mdf4_cut = mdf4d.cut (start=0.3)
mdf4_cut.get ('Float64_Signal') .plot ()

cut measurement from start of measurement to 0.4s
mdf4_cut = mdf4.cut (stop=0.45)
mdf4_cut.get ('Float64_Signal') .plot ()

filter some signals from the file
mdf4 = mdfd4.filter (['Int32_Signal', 'Uint8_Signal'])

save using zipped transpose deflate blocks
mdf4.save ('out.mf4', compression=2, overwrite=True)

4.2 Working with Signal

from _ future_ import print_function, division
from asammdf import Signal
import numpy as np

create 3 Signal objects with different time stamps

unit8 with 100ms time raster
timestamps = np.array([0.1 = t for t in range(5)], dtype=np.float32)
s_uint8 = Signal (samples=np.array ([t for t in range(5)], dtype=np.uint8),
timestamps=timestamps,
name='Uint8_Signal',
unit="ul")

int32 with 50ms time raster

timestamps = np.array([0.05 % t for t in range(10)], dtype=np.float32)

s_int32 = Signal (samples=np.array(list (range (-500, 500, 100)), dtype=np.int32),
timestamps=timestamps,
name='Int32_Signal',
unit="'14")

float64 with 300ms time raster

timestamps = np.array([0.3 = t for t in range(3)], dtype=np.float32)

s_float64 = Signal (samples=np.array(list (range (2000, -1000, -1000)), dtype=np.int32),
timestamps=timestamps,
name='Float64_Signal',

48 Chapter 4. Examples

asammdf Documentation, Release 3.0.0

map

unit="£f8")

signals

xs = np.linspace (-1, 1, 50)
ys = np.linspace (-1, 1, 50)

X, Y =
vals =
phi =
for i,

np.meshgrid(xs, ys)

np.linspace (0, 180. / np.pi, 100)
np.ones ((len(vals), 50, 50), dtype=np.floatb64)
val in enumerate (vals) :

phi[i] *= val

R =1 - np.sqrt (X«*2 + Y*«%2)

samples

timestamps

s_map

s_map.plot ()

prod =

prod.name
prod.unit =
prod.plot ()

pow2 =

Pow2.name
pow2.unit

np.cos (2 * np.pi *» X + phi) % R

np.arange (0, 2, 0.02)

Signal (samples=samples,

timestamps=timestamps,
name='Variable Map Signal',
unit="dB")

s_float64d + s_uint8

'Uint8_Signal x Float64_Signal'

LI}

s_uint8 *x 2

'Uint8_Signal ~ 2"
lulA2l

pow2.plot ()

allsum s_uint8 + s_int32 + s_floaté64

allsum = 'Uint8_Signal + Int32_Signal + Float64_Signal'
allsum.unit = '+'

allsum.plot ()

inplace operations

pow2 x= -1
PoOw2 .name
pow?2.plot ()

cut signal

'- Uint8_Signal ~ 2'

s_int32.plot ()

cut_signal

s_int32.cut (start=0.2, stop=0.35)

cut_signal.plot ()

4.2. Working with Signal 49

asammdf Documentation, Release 3.0.0

50 Chapter 4. Examples

CHAPTER B

Benchmarks

asammdf relies heavily on dict objects. Starting with Python 3.6 the dict objects are more compact and ordered
(implementation detail); asammdf uses takes advantage of those changes so for best performance it is advised to use
Python >= 3.6.

5.1 Test setup

The benchmarks were done using two test files (available here https://github.com/danielhrisca/asammdf/issues/14) (for
mdf version 3 and 4) of around 170MB. The files contain 183 data groups and a total of 36424 channels.

asamdf 3.0.0 was compared against mdfreader 2.7.5. mdfreader seems to be the most used Python package to handle
MDF files, and it also supports both version 3 and 4 of the standard.

The three benchmark cathegories are file open, file save and extracting the data for all channels inside the file(36424
calls). For each cathegory two aspect were noted: elapsed time and peak RAM usage.

5.1.1 Dependencies

You will need the following packages to be able to run the benchmark script
* psutil

e mdfreader

5.1.2 Usage

Extract the test files from the archive, or provide a folder that contains the files “test.mdf” and “test.mf4”. Run the
module bench.py (see —help option for available options)

51

https://github.com/danielhrisca/asammdf/issues/14

asammdf Documentation, Release 3.0.0

5.2 x64 Python results

Benchmark environment

* 3.6.4 (default, Jan 5 2018, 02:35:40) [GCC 7.2.1 20171224]

* Linux-4.15.0-1-MANJARO-x86_64-with-arch-Manjaro-Linux
¢ 4GB installed RAM

Notations used in the results

¢ full = asammdf MDF object created with memory=full (everything loaded into RAM)

¢ low = asammdf MDF object created with memory=low (raw channel data not loaded into RAM, but metadata

loaded to RAM)

¢ minimum = asammdf MDF object created with memory=full (lowest possible RAM usage)

» compress = mdfreader mdf object created with compression=blosc

* noDatal.oading = mdfreader mdf object read with noDatal.oading=True

Files used for benchmark:

* 183 groups
¢ 36424 channels

5.2.1 Raw data

Open file Time [ms] | RAM [MB]
asammdf 3.0.0 full mdfv3 706 256
asammdf 3.0.0 low mdfv3 637 103
asammdf 3.0.0 minimum mdfv3 612 64
mdfreader 2.7.5 mdfv3 2201 414
mdfreader 2.7.5 compress mdfv3 1871 281
mdfreader 2.7.5 noDatal.oading mdfv3 | 948 160
asammdf 3.0.0 full mdfv4 2599 296
asammdf 3.0.0 low mdfv4 2485 131
asammdf 3.0.0 minimum mdfv4 1376 64
mdfreader 2.7.5 mdfv4 5706 435
mdfreader 2.7.5 compress mdfv4 5453 303
mdfreader 2.7.5 noDatal.oading mdfv4 | 3904 181

52

Chapter 5. Benchmarks

asammdf Documentation, Release 3.0.0

Save file Time [ms] | RAM [MB]
asammdf 3.0.0 full mdfv3 468 258
asammdf 3.0.0 low mdfv3 363 110
asammdf 3.0.0 minimum mdfv3 919 80
mdfreader 2.7.5 mdfv3 6424 451
mdfreader 2.7.5 noDatal.oading mdfv3 | 7364 510
mdfreader 2.7.5 compress mdfv3 6624 449
asammdf 3.0.0 full mdfv4 984 319
asammdf 3.0.0 low mdfv4 1028 156
asammdf 3.0.0 minimum mdfv4 2786 80
mdfreader 2.7.5 mdfv4 3355 460
mdfreader 2.7.5 noDatal.oading mdfv4 | 5153 483
mdfreader 2.7.5 compress mdfv4 3773 457
Get all channels (36424 calls) Time [ms] | RAM [MB]
asammdf 3.0.0 full mdfv3 1196 269
asammdf 3.0.0 low mdfv3 5230 121
asammdf 3.0.0 minimum mdfv3 6871 85
mdfreader 2.7.5 mdfv3 77 414
mdfreader 2.7.5 noDatal.oading mdfv3 | 13036 195
mdfreader 2.7.5 compress mdfv3 184 281
asammdf 3.0.0 full mdfv4 1207 305
asammdf 3.0.0 low mdfv4 5613 144
asammdf 3.0.0 minimum mdfv4 7725 80
mdfreader 2.7.5 mdfv4 74 435
mdfreader 2.7.5 noDatal.oading mdfv4 | 14140 207
mdfreader 2.7.5 compress mdfv4 171 307
Convert file Time [ms] | RAM [MB]
asammdf 3.0.0 full v3 to v4 3712 565
asammdf 3.0.0 low v3 to v4 4091 228
asammdf 3.0.0 minimum v3 to v4 | 6740 126
asammdf 3.0.0 full v4 to v3 3787 571
asammdf 3.0.0 low v4 to v3 4546 222
asammdf 3.0.0 minimum v4 to v3 | 8369 115
Merge files Time [ms] | RAM [MB]
asammdf 3.0.0 full v3 7297 975
asammdf 3.0.0 low v3 7766 282
asammdf 3.0.0 minimum v3 11363 163
mdfreader 2.7.5 mdfv3 13039 1301
mdfreader 2.7.5 compress mdfv3 12877 1298
mdfreader 2.7.5 noDatal.oading mdfv3 | 12981 1421
asammdf 3.0.0 full v4 11313 1025
asammdf 3.0.0 low v4 12155 322
asammdf 3.0.0 minimum v4 18787 152
mdfreader 2.7.5 mdfv4 21423 1309
mdfreader 2.7.5 noDatal.oading mdfv4 | 20142 1352
mdfreader 2.7.5 compress mdfv4 20600 1309

5.2. x64 Python results

53

asammdf Documentation, Release 3.0.0

5.2.2 Graphical results

54 Chapter 5. Benchmarks

CHAPTER O

Indices and tables

* genindex
* modindex

e search

55

asammdf Documentation, Release 3.0.0

56 Chapter 6. Indices and tables

Index

A

astype() (asammdf.signal.Signal method), 40
AttachmentBlock (class in asammdf.v4_blocks), 38

C

Channel (class in asammdf.v2_v3_blocks), 19

Channel (class in asammdf.v4_blocks), 38

ChannelConversion (class in asammdf.v2_v3_blocks), 21

ChannelConversion (class in asammdf.v4_blocks), 38

ChannelDependency (class in asammdf.v2_v3_blocks),
22

ChannelExtension (class in asammdf.v2_v3_blocks), 23

ChannelGroup (class in asammdf.v2_v3_blocks), 24

ChannelGroup (class in asammdf.v4_blocks), 38

convert() (asammdf.mdf. MDF method), 8

cut() (asammdf.mdf. MDF method), 8

cut() (asammdf.signal.Signal method), 40

D

DataBlock (class in asammdf.v4_blocks), 38
DataGroup (class in asammdf.v2_v3_blocks), 25
DataGroup (class in asammdf.v4_blocks), 38
DatalList (class in asammdf.v4_blocks), 38

E

export() (asammdf.mdf.MDF method), 8
extend() (asammdf.signal.Signal method), 40

F

FileHistory (class in asammdf.v4_blocks), 39
FileldentificationBlock (class in

mdf.v2_v3_blocks), 26
FileldentificationBlock (class in asammdf.v4_blocks), 39
filter() (asammdf.mdf.MDF method), 9

H

HeaderBlock (class in asammdf.v2_v3_blocks), 26
HeaderBlock (class in asammdf.v4_blocks), 39

asam-

interp() (asammdf.signal.Signal method), 40
iter_channels() (asammdf.mdf.MDF method), 10
iter_groups() (asammdf.mdf. MDF method), 10

M

MDF (class in asammdf.mdf), 7
merge() (asammdf.mdf.MDF static method), 10

P

plot() (asammdf.signal.Signal method), 40
ProgramBlock (class in asammdf.v2_v3_blocks), 27

R

resample() (asammdf.mdf. MDF method), 10

S

SampleReduction (class in asammdf.v2_v3_blocks), 28
select() (asammdf.mdf. MDF method), 10

Signal (class in asammdf.signal), 39
Sourcelnformation (class in asammdf.v4_blocks), 39

T

TextBlock (class in asammdf.v2_v3_blocks), 28
TextBlock (class in asammdf.v4_blocks), 39
TriggerBlock (class in asammdf.v2_v3_blocks), 29

W

whereis() (asammdf.mdf. MDF method), 11

57

	Introduction
	Project goals
	Features
	Major features not implemented (yet)
	Dependencies
	Installation

	API
	MDF
	MDF3
	MDF version 2 & 3 blocks

	MDF4
	MDF version 4 blocks

	Signal
	Notes about the memory argument
	MDF created with memory=’full’
	MDF created with memory=’low’
	MDF created with memory=’minimum’

	Tips
	Impact of memory argument
	MDF created with memory=’full’
	MDF created with memory=’low’
	MDF created with memory=’minimum’

	Chunked data access
	Optimized methods

	Examples
	Working with MDF
	Working with Signal

	Benchmarks
	Test setup
	Dependencies
	Usage

	x64 Python results
	Raw data
	Graphical results

	Indices and tables

