asammdf Documentation
Release 2.8.1

Daniel Hrisca

Dec 18, 2017

Contents

Project goals

Features

Major features not implemented (yet)
Dependencies

Installation

API

Benchmarks

Indices and tables

11

13

61

71

asammdf Documentation, Release 2.8.1

asammd]f is a fast parser/editor for ASAM (Associtation for Standardisation of Automation and Measuring Systems)
MDF (Measurement Data Format) files.

asammdf supports MDF versions 2 (.dat), 3 (.mdf) and 4 (.mf4).
asammdf works on Python 2.7, and Python >= 3.4 (Travis CI tests done with Python 2.7 and Python >= 3.5)

Contents 1

asammdf Documentation, Release 2.8.1

2 Contents

CHAPTER 1

Project goals

The main goals for this library are:
* to be faster than the other Python based mdf libraries

* to have clean and easy to understand code base

asammdf Documentation, Release 2.8.1

4 Chapter 1. Project goals

CHAPTER 2

Features

* create new mdf files from scratch
* append new channels
* read unsorted MDF v3 and v4 files
« filter a subset of channels from original mdf file
* cut measurement to specified time interval
* convert to different mdf version
* export to Excel, HDF5, Matlab and CSV
* merge multiple files sharing the same internal structure
¢ read and save mdf version 4.10 files containing zipped data blocks
* split large data blocks (configurable size) for mdf version 4
* disk space savings by compacting 1-dimensional integer channels (configurable)
« full support (read, append, save) for the following map types (multidimensional array channels):
— mdf version 3 channels with CDBLOCK
— mdf version 4 structure channel composition
— mdf version 4 channel arrays with CNTemplate storage and one of the array types:
* (- array
| - scaling axis
* 2 - look-up
* add and extract attachments for mdf version 4
* files are loaded in RAM for fast operations

* handle large files (exceeding the available RAM) using memory = minimum argument

asammdf Documentation, Release 2.8.1

* extract channel data, master channel and extra channel information as Signal objects for unified operations with
v3 and v4 files

* time domain operation using the Signal class
— Pandas data frames are good if all the channels have the same time based
— usually a measurement will have channels from different sources at different rates

— the Signal class facilitates operations with such channels

6 Chapter 2. Features

CHAPTER 3

Major features not implemented (yet)

* for version 3

— functionality related to sample reduction block (but the class is defined)
* for version 4

— handling of bus logging measurements

— handling of unfinnished measurements (mdf 4)

— full support for remaining mdf 4 channel arrays types

— xml schema for TXBLOCK and MDBLOCK

— partial conversions

— event blocks

— channels with default X axis

— chanenls with reference to attachment

asammdf Documentation, Release 2.8.1

8 Chapter 3. Major features not implemented (yet)

CHAPTER 4

Dependencies

asammdf uses the following libraries

numpy : the heart that makes all tick

numexpr : for algebraic and rational channel conversions
matplotlib : for Signal plotting

wheel : for installation in virtual environments

pandas : for DataFrame export

optional dependencies needed for exports

h5py : for HDF5 export
xIsxwriter : for Excel export

scipy : for Matlab .mat export

asammdf Documentation, Release 2.8.1

10 Chapter 4. Dependencies

CHAPTER B

Installation

asammdjf is available on
* github: https://github.com/danielhrisca/asammdf/
» PyPI: https://pypi.org/project/asammdf/

pip install asammdf

11

https://github.com/danielhrisca/asammdf/
https://pypi.org/project/asammdf/

asammdf Documentation, Release 2.8.1

12 Chapter 5. Installation

CHAPTER O

API

6.1 Package level

asammdf .configure (infeger_compacting=None, split_data_blocks=None, split_threshold=None, over-

write=None)
configure asammdf parameters

Parameters integer_compacting : bool

enable/disable compacting of integer channels on append. This has the potential to
greatly reduce file size, but append speed is slower and further loading of the resulting
file will also be slower.

split_data_blocks : bool
enable/disable splitting of large data blocks using data lists for mdf version 4
split_treshold : int

size hint of splitted data blocks, default 2MB; if the initial size is smaller then no data
list is used. The actual split size depends on the data groups’ records size

overwrite : bool
default option for save method’s overwrite argument

Enabling compacting of integer channels on append the file size of the resulting file can decrease up to a factor of
~0.5. Splitting the data blocks is usefull for large blocks. The recommended maximum threshold by ASAM is 4MB.
asammdf uses a default of 2MB

6.2 MDF

This class acts as a proxy for the MDF3 and MDF4 classes. All attribute access is delegated to the underlying _mdf
attribute (MDF3 or MDF4 object). See MDF3 and MDF4 for available extra methods.

13

asammdf Documentation, Release 2.8.1

An empty MDF file is created if the name argument is not provided. If the name argument is provided then the file
must exist in the filesystem, otherwise an exception is raised.

Best practice is to use the MDF as a context manager. This way all resources are released correctly in case of excep-
tions.

with MDF (r'test.mdf') as mdf_file:
do something

class asammdf .mdf .MDF (name=None, memory="full’, version="4.10")
Unified access to MDF v3 and v4 files.

Parameters name : string
mdf file name, if provided it must be a real file name
memory : str
memory option; default full
* if full the data group binary data block will be loaded in RAM

« if low the channel data is read from disk on request, and the metadata is loaded
into RAM

e if minimum only minimal data is loaded into RAM
version : string

mdf file version from (‘2.00°, 2.14, 3.00°, ‘3.10°, 3.20°, ‘3.30", ‘4.00°, ‘4.10",
‘4.11°); default *4.10°

convert (to, memory="full’)
convert MDF to other versions

Parameters to : str

new mdf version from (‘2.00°, ‘2.14’, ‘3.00°, ‘3.10°, ‘3.20°, ‘3.30°, ‘4.00°, ‘4.10",
‘4.11°)

memory : str
memory option; default full
Returns out : MDF
new MDF object

cut (start=None, stop=None, whence=0)
convert MDF to other versions

Parameters start : float

start time, default None. If None then the start of measurement is used
stop : float

stop time, default . If None then the end of measurement is used
whence : int

how to search for the start and stop values

e 0: absolute

* 1 : relative to first timestamp

Returns out : MDF

14 Chapter 6. API

asammdf Documentation, Release 2.8.1

new MDF object

export (fint, filename=None)

export MDF to other formats. The MDF file name is used is available, else the filename aragument must
be provided.

Parameters fmt : string
can be one of the following:

* csv [CSV export that uses the “;” delimiter. This option] will generate a new csv file
for each data group (<MDFNAME>_DataGroup_<cntr>.csv)

hdf5 [HDPFS5 file output; each MDF data group is mapped to] a HDF5 group with the
name ‘DataGroup_<cntr>" (where <cntr> is the index)

* excel [Excel file output (very slow). This option will] generate a new excel file for
each data group (<KMDFNAME>_DataGroup_<cntr>.xIsx)

* mat [Matlab .mat version 5 export, for Matlab >= 7.6. In] the mat file the chan-
nels will be renamed to ‘DataGroup_<cntr>_<channel name>’. The channel group
master will be renamed to ‘DataGroup_<cntr>_<channel name>_master’ (<cntr>
is the data group index starting from 0)

filename : string
export file name

filter (channels, memory=None)
return new MDF object that contains only the channels listed in channels argument

Parameters channels : list
list of channel names to be filtered
memory : str

memory option for filtered mdf; default None in which case the original file’s
memory option is used

Returns mdf : MDF
new MDF file

iter to_pandas()
generator that yields channel groups as pandas DataFrames

static merge (files, outversion="4.10", memory="full’)
merge several files and return the merged MDF object. The files must have the same internal structure
(same number of groups, and same channels in each group)

Parameters files : list | tuple
list of MDF file names
outversion : str
merged file version
memory : str
memory option; default full
Returns merged : MDF

new MDF object with merged channels

6.2. MDF 15

asammdf Documentation, Release 2.8.1

Raises MdfException : if there are inconsistencies between the files
merged MDF object

resample (raster, memory=None)
resample all channels to given raster

Parameters raster : float
time raster is seconds
memory : str
memory option; default None
Returns mdf : MDF
new MDF with resampled channels

select (channels, dataframe=False)
return the channels listed in channels argument

Parameters channels : list
list of channel names to be filtered
dataframe: bool

return a pandas DataFrame instead of a list of Signals; in this case the signals will
be interpolated using the union of all timestamps

Returns signals : list

Isit of Signal objects based on the input channel list

6.2.1 MDF2, MDF3 and MDF4 classes

MDF2

asammdf tries to emulate the mdf structure using Python builtin data types.

The header attibute is an OrderedDict that holds the file metadata.

The groups attribute is a dictionary list with the following keys:

data_group : DataGroup object
channel_group : ChannelGroup object
channels : list of Channel objects with the same order as found in the mdf file
channel_conversions : list of ChannelConversion objects in 1-to-1 relation with the channel list
channel_sources : list of Sourcelnformation objects in 1-to-1 relation with the channels list
chanel_dependencies : list of ChannelDependency objects in a 1-to-1 relation with the channel list
data_block : DataBlock object
texts : dictionay containing TextBlock objects used throughout the mdf

— channels : list of dictionaries that contain TextBlock objects ralated to each channel

% long_name_addr : channel long name

% comment_addr : channel comment

16

Chapter 6. API

asammdf Documentation, Release 2.8.1

% display_name_addr : channel display name
— channel group : list of dictionaries that contain TextBlock objects ralated to each channel group
* comment_addr : channel group comment

— conversion_tab : list of dictionaries that contain TextBlock objects ralated to VATB and VTABR channel
conversions

+ text_{n} : n-th text of the VTABR conversion
* sorted : bool flag to indicate if the source file was sorted; it is used when memory is low or minimum
* size : data block size; used for lazy laoding of measured data
* record_size : dict of record ID -> record size pairs
The file_history attribute is a TextBlock object.

The channel_db attibute is a dictionary that holds the (data group index, channel index) pair for all signals. This is
used to speed up the ger_signal_by_name method.

The master_db attibute is a dictionary that holds the channel index of the master channel for all data groups. This is
used to speed up the get_signal_by_name method.

API

class asammdf.mdf2.MDF2 (name=None, memory=2, version="2.14")
If the name exist it will be loaded otherwise an empty file will be created that can be later saved to disk

Parameters name : string
mdf file name
memory : str
memory optimization option; default full
* if full the data group binary data block will be memorised in RAM

¢ if low the channel data is read from disk on request, and the metadata is
memorised into RAM

e if minimum only minimal data is memorised into RAM
version : string

mdf file version (‘2.00’ or ‘2.14’); default ‘2.14°

Attributes
name (string) mdf file name
groups (list) list of data groups

header (OrderedDict) mdf file header
file_history| (TextBlock) file history text block; can be None

memory (bool) load measured data option

version (str) mdf version

chan- (dict) used for fast channel access by name; for each name key the value is a list of (group
nels_db index, channel index) tuples

mas- (dict) used for fast master channel access; for each group index key the value is the master
ters_db channel index

6.2. MDF 17

asammdf Documentation, Release 2.8.1

add_trigger (group, timestamp, pre_time=0, post_time=0, comment="")
add trigger to data group

Parameters group : int
group index
timestamp : float
trigger time
pre_time : float
trigger pre time; default O
post_time : float
trigger post time; default O
comment : str
trigger comment

append (signals, acquisition_info="Python’, common_timebase="False)
Appends a new data group.

For channel dependencies type Signals, the samples attribute must be a numpy.recarray
Parameters signals : list
list on Signal objects
acquisition_info : str
acquisition information; default ‘Python’
common_timebase : bool

flag to hint that the signals have the same timebase

Examples

>>> # case 1 conversion type None

>>> sl = np.array([1l, 2, 3, 4, 51])

>>> s2 = np.array([-1, -2, -3, -4, -51])

>>> s3 = np.array([0.1, 0.04, 0.09, 0.16, 0.25])

>>> t = np.array([0.001, 0.002, 0.003, 0.004, 0.0057)

>>> mdf = MDF2 ('new.mdf')

>>> mdf.append([sl, s2, s3], 'created by asammdf v1.1.0")

>>> # case 2: VTAB conversions from channels inside another file
>>> mdfl = MDF2 ('in.mdf")

>>> chl = mdfl.get ("Channell VTAB")

>>> ch2 = mdfl.get ("Channel2_ VTABR")

>>> sigs = [chl, ch2]

>>> mdf2 = MDF2 ('out.mdf')

>>> mdf2.append(sigs, 'created by asammdf v1.1.0")

>>> names = ['Positive', 'Negative', 'Float']

>>> units = ['+', '-', '".f'"]

>>> info = {}

>>> sl = Signal (samples=sl, timstamps=t, unit='+', name='Positive')
>>> 352 = Signal (samples=s2, timstamps=t, unit='-"', name='Negative')
>>> 53 = Signal (samples=s3, timstamps=t, unit='flts', name='Floats"')

18

Chapter 6. API

asammdf Documentation, Release 2.8.1

close ()

if the MDF was created with memory="minimum’ and new channels have been appended, then this must
be called just before the object is not used anymore to clean-up the temporary file

get (name=None, group=None, index=None, raster=None, samples_only=False, data=None)
Gets channel samples.

Channel can be specified in two ways:
* using the first positional argument name

— if there are multiple occurrences for this channel then the group and index arguments can
be used to select a specific group.

— if there are multiple occurrences for this channel and either the group or index arguments
is None then a warning is issued

* using the group number (keyword argument group) and the channel number (keyword argu-
ment index). Use info method for group and channel numbers

If the raster keyword argument is not None the output is interpolated accordingly.
Parameters name : string
name of channel
group : int
0-based group index
index : int
0-based channel index
raster : float
time raster in seconds
samples_only : bool

if True return only the channel samples as numpy array; if False return a Signal
object

Returns res : (numpy.array | Signal)

returns Signal if samples_only*=*False (default option), otherwise returns
numpy.array. The Signal samples are:

* numpy recarray for channels that have CDBLOCK or BYTEARRAY
type channels

* numpy array for all the rest
Raises MdfError :
* if the channel name is not found
* if the group index is out of range
* if the channel index is out of range

get_channel_comment (name=None, group=None, index=None)
Gets channel comment.

Channel can be specified in two ways:

* using the first positional argument name

6.2.

MDF 19

asammdf Documentation, Release 2.8.1

— if there are multiple occurrences for this channel then the group and index arguments can
be used to select a specific group.

— if there are multiple occurrences for this channel and either the group or index arguments
is None then a warning is issued

¢ using the group number (keyword argument group) and the channel number (keyword argu-
ment index). Use info method for group and channel numbers

If the raster keyword argument is not None the output is interpolated accordingly.
Parameters name : string
name of channel
group : int
0-based group index
index : int
0-based channel index
Returns comment : str
found channel comment

get_channel_unit (name=None, group=None, index=None)
Gets channel unit.

Channel can be specified in two ways:
e using the first positional argument name

— if there are multiple occurrences for this channel then the group and index arguments can
be used to select a specific group.

— if there are multiple occurrences for this channel and either the group or index arguments
is None then a warning is issued

¢ using the group number (keyword argument group) and the channel number (keyword argu-
ment index). Use info method for group and channel numbers

If the raster keyword argument is not None the output is interpolated accordingly.
Parameters name : string
name of channel
group : int
0-based group index
index : int
0-based channel index
Returns unit : str
found channel unit

get_master (index, data=None)
returns master channel samples for given group

Parameters index : int
group index

data : bytes

20 Chapter 6. API

asammdf Documentation, Release 2.8.1

data block raw bytes; default None

Returns t : numpy.array

master channel samples

info ()

get MDF information as a dict

Examples

>>> mdf = MDF2('test.mdf'")
>>> mdf.info ()

iter_get_triggers ()
generator that yields triggers

Returns trigger_info : dict

trigger information with the following keys:

comment : trigger comment
time : trigger time

pre_time : trigger pre time
post_time : trigger post time
index : trigger index

group : data group index of trigger

save (dst=", overwrite=None, compression=0)
Save MDF to dst. If dst is not provided the the destination file name is the MDF name. If overwrite is True
then the destination file is overwritten, otherwise the file name is appended with ‘_<cntr>’, were ‘<cntr>’
is the first counter that produces a new file name (that does not already exist in the filesystem).

Parameters dst : str

destination file name, Default “’

overwrite : bool

overwrite flag, default False

compression : int

does nothing for mdf version3; introduced here to share the same API as mdf
version 4 files

MDF version 2 blocks

The following classes implement different MDF version3 blocks.

Channel Class

class asammdf.mdf?2.Channel (**kargs)
CNBLOCK class derived from dict

6.2. MDF

21

asammdf Documentation, Release 2.8.1

The Channel object can be created in two modes:
* using the stream and address keyword parameters - when reading from file
* using any of the following presented keys - when creating a new Channel
The keys have the following meaning:
* id - Block type identifier, always “CN”
* block_len - Block size of this block in bytes (entire CNBLOCK)
* next_ch_addr - Pointer to next channel block (CNBLOCK) of this channel group (NIL allowed)
* conversion_addr - Pointer to the conversion formula (CCBLOCK) of this signal (NIL allowed)

* source_depend_addr - Pointer to the source-depending extensions (CEBLOCK) of this signal (NIL
allowed)

e ch_depend_addr - Pointer to the dependency block (CDBLOCK) of this signal (NIL allowed)
¢ comment_addr - Pointer to the channel comment (TXBLOCK) of this signal (NIL allowed)
 channel_type - Channel type

— 0 = data channel

— 1 = time channel for all signals of this group (in each channel group, exactly one channel must
be defined as time channel). The time stamps recording in a time channel are always relative to
the start time of the measurement defined in HDBLOCK.

* short_name - Short signal name, i.e. the first 31 characters of the ASAM-MCD name of the signal
(end of text should be indicated by 0)

* description - Signal description (end of text should be indicated by 0)

« start_offset - Start offset in bits to determine the first bit of the signal in the data record. The start
offset N is divided into two parts: a “Byte offset” (= N div 8) and a “Bit offset” (= N mod 8). The
channel block can define an “additional Byte offset” (see below) which must be added to the Byte
offset.

¢ bit_count - Number of bits used to encode the value of this signal in a data record

 data_type - Signal data type

 range_flag - Value range valid flag

¢ min_raw_value - Minimum signal value that occurred for this signal (raw value)

e max_raw_value - Maximum signal value that occurred for this signal (raw value)

* sampling_rate - Sampling rate for a virtual time channel. Unit [s]

* long_name_addr - Pointer to TXBLOCK that contains the ASAM-MCD long signal name

¢ display_name_addr - Pointer to TXBLOCK that contains the signal’s display name (NIL allowed)
« aditional_byte_offset - Additional Byte offset of the signal in the data record (default value: 0).

Parameters stream : file handle
mdf file handle
address : int

block address inside mdf file

22 Chapter 6. API

asammdf Documentation, Release 2.8.1

Examples

>>> with open('test.mdf', 'rb') as mdf:

. chl = Channel (stream=mdf, address=0xBA52)
>>> ch2 = Channel ()

>>> chl.name

'VehicleSpeed'

>>> chl['id']

b'CN'

Attributes

name (str) full channel name
address (int) block address inside mdf file
dependencies | (list) Isit of channel dependencies

ChannelConversion Class

class asammdf.mdf2.ChannelConversion (**kargs)
CCBLOCK class derived from dict

The ChannelConversion object can be created in two modes:
* using the stream and address keyword parameters - when reading from file

 using any of the following presented keys - when creating a new ChannelConversion

The first keys are common for all conversion types, and are followed by conversion specific keys. The keys have

the following meaning:

e common keys

id - Block type identifier, always “CC”
block_len - Block size of this block in bytes (entire CCBLOCK)

— range_{flag - Physical value range valid flag:
— min_phy_value - Minimum physical signal value that occurred for this signal
— max_phy_value - Maximum physical signal value that occurred for this signal
— unit - Physical unit (string should be terminated with 0)
— conversion_type - Conversion type (formula identifier)
— ref_param_nr - Size information about additional conversion data

* specific keys

— linear conversion

* b - offset
a - factor
* CANapeHiddenExtra - sometimes CANape appends extra information; not compliant
with MDF specs
— ASAM formula conversion
6.2. MDF 23

asammdf Documentation, Release 2.8.1

% formula - ecuation as string

polynomial or rational conversion

% P1 .. P6 - factors

exponential or logarithmic conversion

% P1 .. P7 - factors

tabular with or without interpolation (grouped by n)
raw_{n} - n-th raw integer value (X axis)
* phys_{n} - n-th physical value (Y axis)

text table conversion

* param_val_{n} - n-th integers value (X axis)

text_{n} - n-th text value (Y axis)

text range table conversion
* lower_{n} - n-th lower raw value
* upper_{n} - n-th upper raw value

text_{n} - n-th text value

Parameters stream : file handle
mdf file handle
address : int

block address inside mdf file

Examples

>>> with open('test.mdf', 'rb') as mdf:

.. ccl = ChannelConversion (stream=mdf, address=0xBA52)
>>> cc2 = ChannelConversion (conversion_type=0)

>>> ccl['b'], ccl['a']

0, 100.0

Attributes

address \ (int) block address inside mdf file

ChannelDependency Class

class asammdf.mdf?2.ChannelDependency (**kargs)
CDBLOCK class derived from dict

Currently the ChannelDependency object can only be created using the stream and address keyword parameters

when reading from file

The keys have the following meaning:

24

Chapter 6. API

asammdf Documentation, Release 2.8.1

* id - Block type identifier, always “CD”
* block_len - Block size of this block in bytes (entire CDBLOCK)
* dependency_type - Dependency type
¢ sd_nr - Total number of signals dependencies (m)
« for each dependency there is a group of three keys:
— dg_{n} - Pointer to the data group block (DGBLOCK) of signal dependency n
— cg_{n} - Pointer to the channel group block (DGBLOCK) of signal dependency n
— ch_{n} - Pointer to the channel block (DGBLOCK) of signal dependency n
* there can also be optional keys which decribe dimensions for the N-dimensional dependencies:

— dim_{n} - Optional: size of dimension n for N-dimensional dependency

Parameters stream : file handle
mdf file handle
address : int

block address inside mdf file

Attributes

address \ (int) block address inside mdf file

ChannelExtension Class

class asammdf.mdf2.ChannelExtension (**kargs)
CEBLOCK class derived from dict

The ChannelExtension object can be created in two modes:
¢ using the stream and address keyword parameters - when reading from file
* using any of the following presented keys - when creating a new ChannelExtension

The first keys are common for all conversion types, and are followed by conversion specific keys. The keys have
the following meaning:

e common keys
— id - Block type identifier, always “CE”
— block_len - Block size of this block in bytes (entire CEBLOCK)
— type - Extension type identifier
* specific keys
— for DIM block
% module_nr - Number of module
* module_address - Address

description - Description

6.2. MDF 25

asammdf Documentation, Release 2.8.1

+ BECU_identification - Identification of ECU
x reserved(’ - reserved
— for Vector CAN block
% CAN_id - Identifier of CAN message
CAN_ch_index - Index of CAN channel
* message_name - Name of message (string should be terminated by 0)
% sender_name - Name of sender (string should be terminated by 0)

% reservedO - reserved

Parameters stream : file handle
mdf file handle
address : int

block address inside mdf file

Attributes

| address [(int) block address inside mdf file |

ChannelGroup Class

class asammdf.mdf2.ChannelGroup (**kargs)
CGBLOCK class derived from dict

The ChannelGroup object can be created in two modes:
* using the stream and address keyword parameters - when reading from file
* using any of the following presented keys - when creating a new ChannelGroup
The keys have the following meaning:
* id - Block type identifier, always “CG”
* block_len - Block size of this block in bytes (entire CGBLOCK)
* next_cg_addr - Pointer to next channel group block (CGBLOCK) (NIL allowed)
e first_ch_addr - Pointer to first channel block (CNBLOCK) (NIL allowed)
¢ comment_addr - Pointer to channel group comment text (TXBLOCK) (NIL allowed)

¢ record_id - Record ID, i.e. value of the identifier for a record if the DGBLOCK defines a number of
record IDs > 0

¢ ch_nr - Number of channels (redundant information)

« samples_byte_nr - Size of data record in Bytes (without record ID), i.e. size of plain data for a each
recorded sample of this channel group

* cycles_nr - Number of records of this type in the data block i.e. number of samples for this channel
group

26 Chapter 6. API

asammdf Documentation, Release 2.8.1

¢ sample_reduction_addr - only since version 3.3. Pointer to first sample reduction
BLOCK) (NIL allowed) Default value: NIL.

Parameters stream : file handle
mdf file handle
address : int

block address inside mdf file

Examples

block

(SR-

>>> with open('test.mdf', 'rb') as mdf:

.. cgl = ChannelGroup (stream=mdf, address=0xBA52)
>>> cg2 = ChannelGroup (sample_bytes_nr=32)

>>> hex (cgl.address)

0xBA52

>>> cgl['id']

b'CG'

Attributes

address \ (int) block address inside mdf file

DataGroup Class

class asammdf.mdf2.DataGroup (**kargs)
DGBLOCK class derived from dict

The DataGroup object can be created in two modes:
* using the stream and address keyword parameters - when reading from file
* using any of the following presented keys - when creating a new DataGroup
The keys have the following meaning:
* id - Block type identifier, always “DG”
* block_len - Block size of this block in bytes (entire DGBLOCK)
* next_dg_addr - Pointer to next data group block (DGBLOCK) (NIL allowed)
* first_cg_addr - Pointer to first channel group block (CGBLOCK) (NIL allowed)
* trigger_addr - Pointer to trigger block (TRBLOCK) (NIL allowed)
* data_block_addr - Pointer to the data block
¢ cg_nr - Number of channel groups (redundant information)
e record_id_nr - Number of record IDs in the data block

¢ reservedO - since version 3.2; Reserved

Parameters stream : file handle

6.2. MDF

27

asammdf Documentation, Release 2.8.1

mdf file handle
address : int

block address inside mdf file

Attributes

] address \ (int) block address inside mdf file ‘

FileldentificationBlock Class

class asammdf.mdf2.FileIdentificationBlock (**kargs)
IDBLOCK class derived from dict

The TriggerBlock object can be created in two modes:
* using the stream and address keyword parameters - when reading from file
¢ using the classmethod from_text
The keys have the following meaning:
¢ file_identification - file identifier
e version_str - format identifier
* program_identification - program identifier
* byte_order - default byte order
* float_format - default floating-point format
e mdf _version - version number of MDF format
* code_page - code page number
* reservedO - reserved
* reservedl - reserved
* unfinalized_standard_flags - Standard Flags for unfinalized MDF

* unfinalized_custom_flags - Custom Flags for unfinalized MDF

Parameters stream : file handle
mdf file handle
version : int

mdf version in case of new file

Attributes

address \ (int) block address inside mdf file; should be 0 always

28 Chapter 6. API

asammdf Documentation, Release 2.8.1

HeaderBlock Class

class asammdf.mdf2.HeaderBlock (**kargs)
HDBLOCK class derived from dict

The TriggerBlock object can be created in two modes:
* using the stream - when reading from file
* using the classmethod from_text
The keys have the following meaning:
* id - Block type identifier, always “HD”
* block_len - Block size of this block in bytes (entire HDBLOCK)
* first_dg_addr - Pointer to the first data group block (DGBLOCK)
e comment_addr - Pointer to the measurement file comment text (TXBLOCK) (NIL allowed)
* program_addr - Pointer to program block (PRBLOCK) (NIL allowed)
* dg_nr - Number of data groups (redundant information)
* date - Date at which the recording was started in “DD:MM:YYYY” format
* time - Time at which the recording was started in “HH:MM:SS” format
* author - author name
* organization - organization
* project - project name
* subject - subject
Since version 3.2 the following extra keys were added:
* abs_time - Time stamp at which recording was started in nanoseconds.
¢ tz_offset - UTC time offset in hours (= GMT time zone)
* time_quality - Time quality class

e timer_identification - Timer identification (time source),

Parameters stream : file handle

mdf file handle

Attributes

’ address \ (int) block address inside mdf file; should be 64 always

ProgramBlock Class

class asammdf.v2blocks.ProgramBlock (**kargs)
PRBLOCK class derived from dict

The ProgramBlock object can be created in two modes:

* using the stream and address keyword parameters - when reading from file

6.2. MDF

29

asammdf Documentation, Release 2.8.1

* using any of the following presented keys - when creating a new ProgramBlock
The keys have the following meaning:

* id - Block type identifier, always “PR”

* block_len - Block size of this block in bytes (entire PRBLOCK)

* data - Program-specific data

Parameters stream : file handle
mdf file handle
address : int

block address inside mdf file

Attributes

| address [(int) block address inside mdf file |

SampleReduction Class

class asammdf.v2blocks.SampleReduction (**kargs)
SRBLOCK class derived from dict

Currently the SampleReduction object can only be created by using the stream and address keyword parameters
- when reading from file

The keys have the following meaning:
* id - Block type identifier, always “SR”
* block_len - Block size of this block in bytes (entire SRBLOCK)
¢ next_sr_addr - Pointer to next sample reduction block (SRBLOCK) (NIL allowed)
* data_block_addr - Pointer to the data block for this sample reduction
* cycles_nr - Number of reduced samples in the data block.

* time_interval - Length of time interval [s] used to calculate the reduced samples.

Parameters stream : file handle
mdf file handle
address : int

block address inside mdf file

Attributes

address \ (int) block address inside mdf file ‘

30 Chapter 6. API

asammdf Documentation, Release 2.8.1

TextBlock Class

class asammdf.mdf2.TextBlock (**kargs)
TXBLOCK class derived from dict

The ProgramBlock object can be created in two modes:
* using the stream and address keyword parameters - when reading from file
* using the classmethod from_text
The keys have the following meaning:
* id - Block type identifier, always “TX”
* block_len - Block size of this block in bytes (entire TXBLOCK)

* text - Text (new line indicated by CR and LF; end of text indicated by 0)

Parameters stream : file handle
mdf file handle
address : int
block address inside mdf file
text : bytes

bytes for creating a new TextBlock

Examples

>>> tx1 = TextBlock.from_text ('VehicleSpeed")
>>> txl.text_str

'VehicleSpeed'

>>> tx1['text ']

b'VehicleSpeed'

Attributes

address | (int) block address inside mdf file
text_str | (str) text data as unicode string

TriggerBlock Class

class asammdf.mdf2.TriggerBlock (**kargs)
TRBLOCK class derived from dict

The TriggerBlock object can be created in two modes:
* using the stream and address keyword parameters - when reading from file
* using the classmethod from_text

The keys have the following meaning:

¢ id - Block type identifier, always “TX”

6.2. MDF

31

asammdf Documentation, Release 2.8.1

* block_len - Block size of this block in bytes (entire TRBLOCK)

* text_addr - Pointer to trigger comment text (TXBLOCK) (NIL allowed)
* trigger_events_nr - Number of trigger events n (0 allowed)

e trigger_{n}_time - Trigger time [s] of trigger event n

e trigger_{n}_pretime - Pre trigger time [s] of trigger event n

e trigger_{n}_posttime - Post trigger time [s] of trigger event n

Parameters stream : file handle
mdf file handle
address : int

block address inside mdf file

Attributes

address \ (int) block address inside mdf file ‘

MDF3

asammdf tries to emulate the mdf structure using Python builtin data types.

The header attibute is an OrderedDict that holds the file metadata.

The groups attribute is a dictionary list with the following keys:

data_group : DataGroup object
channel_group : ChannelGroup object
channels : list of Channel objects with the same order as found in the mdf file
channel_conversions : list of ChannelConversion objects in 1-to-1 relation with the channel list
channel_sources : list of Sourcelnformation objects in 1-to-1 relation with the channels list
chanel_dependencies : list of ChannelDependency objects in a 1-to-1 relation with the channel list
data_block : DataBlock object
texts : dictionay containing TextBlock objects used throughout the mdf
— channels : list of dictionaries that contain TextBlock objects ralated to each channel
+ long_name_addr : channel long name
% comment_addr : channel comment
% display_name_addr : channel display name
— channel group : list of dictionaries that contain TextBlock objects ralated to each channel group
% comment_addr : channel group comment

— conversion_tab : list of dictionaries that contain TextBlock objects ralated to VATB and VTABR channel
conversions

+ text_{n} : n-th text of the VTABR conversion

32

Chapter 6. API

asammdf Documentation, Release 2.8.1

* sorted : bool flag to indicate if the source file was sorted; it is used when memory is low or minimum
* size : data block size; used for lazy laoding of measured data
* record_size : dict of record ID -> record size pairs

The file_history attribute is a TextBlock object.

The channel_db attibute is a dictionary that holds the (data group index, channel index) pair for all signals. This is
used to speed up the get_signal_by_name method.

The master_db attibute is a dictionary that holds the channel index of the master channel for all data groups. This is
used to speed up the ger_signal_by_name method.

API

class asammdf.mdf3.MDF3 (name=None, memory=2, version="3.30")
If the name exist it will be loaded otherwise an empty file will be created that can be later saved to disk

Parameters name : string
mdf file name
memory : str
memory optimization option; default full
* if full the data group binary data block will be memorised in RAM

¢ if low the channel data is read from disk on request, and the metadata is
memorised into RAM

e if minimum only minimal data is memorised into RAM
version : string

mdf file version (‘3.00’°, ‘3.10’, ‘3.20’ or ‘3.30’); default ‘3.30’

Attributes
name (string) mdf file name
groups (list) list of data groups

header (OrderedDict) mdf file header
file_history| (TextBlock) file history text block; can be None

memory (bool) load measured data option

version (str) mdf version

chan- (dict) used for fast channel access by name; for each name key the value is a list of (group
nels_db index, channel index) tuples

mas- (dict) used for fast master channel access; for each group index key the value is the master
ters_db channel index

add_trigger (group, timestamp, pre_time=0, post_time=0, comment="")
add trigger to data group

Parameters group : int
group index

timestamp : float

6.2. MDF 33

asammdf Documentation, Release 2.8.1

trigger time
pre_time : float

trigger pre time; default 0
post_time : float

trigger post time; default O
comment : str

trigger comment

append (signals, acquisition_info="Python’, common_timebase=False)
Appends a new data group.

For channel dependencies type Signals, the samples attribute must be a numpy.recarray
Parameters signals : list
list on Signal objects
acquisition_info : str
acquisition information; default ‘Python’
common_timebase : bool

flag to hint that the signals have the same timebase

Examples

>>> # case 1 conversion type None

>>> sl = np.array([1l, 2, 3, 4, 51)

>>> s2 = np.array([-1, -2, -3, -4, -5])

>>> s3 = np.array([0.1, 0.04, 0.09, 0.16, 0.25])

>>> t = np.array([0.001, 0.002, 0.003, 0.004, 0.0057])

>>> names = ['Positive', 'Negative', 'Float']

>>> uynits = ['+', '=-', '.f']

>>> info = {}

>>> sl = Signal (samples=sl, timstamps=t, unit='+', name='Positive')
>>> s2 = Signal (samples=s2, timstamps=t, unit='-', name='Negative')
>>> 33 = Signal (samples=s3, timstamps=t, unit='flts', name='Floats')

>>> mdf = MDF3('new.mdf")

>>> mdf.append([sl, s2, s3], 'created by asammdf v1.1.0")

>>> # case 2: VTAB conversions from channels inside another file
>>> mdfl = MDF3('in.mdf")

>>> chl = mdfl.get ("Channell VTAB")

>>> ch2 = mdfl.get ("Channel2 VTABR")

>>> sigs = [chl, ch2]

>>> mdf2 = MDF3('out.mdf'")

>>> mdf2.append(sigs, 'created by asammdf v1.1.0")

close ()

if the MDF was created with memory="minimum’ and new channels have been appended, then this must

be called just before the object is not used anymore to clean-up the temporary file

get (name=None, group=None, index=None, raster=None, samples_only=False, data=None)
Gets channel samples. Channel can be specified in two ways:

* using the first positional argument name

34

Chapter 6. API

asammdf Documentation, Release 2.8.1

— if there are multiple occurances for this channel then the group and index arguments can
be used to select a specific group.

— if there are multiple occurances for this channel and either the group or index arguments
is None then a warning is issued

* using the group number (keyword argument group) and the channel number (keyword argu-
ment index). Use info method for group and channel numbers

If the raster keyword argument is not None the output is interpolated accordingly.
Parameters name : string
name of channel
group : int
0-based group index
index : int
0-based channel index
raster : float
time raster in seconds
samples_only : bool

if True return only the channel samples as numpy array; if False return a Signal
object

Returns res : (numpy.array | Signal)

returns Signal if samples_only*=*False (default option), otherwise returns
numpy.array. The Signal samples are:

¢ numpy recarray for channels that have CDBLOCK or BYTEARRAY
type channels

e numpy array for all the rest
Raises MdfError :
* if the channel name is not found
* if the group index is out of range
* if the channel index is out of range

get_channel_comment (name=None, group=None, index=None)
Gets channel comment. Channel can be specified in two ways:

* using the first positional argument name

— if there are multiple occurances for this channel then the group and index arguments can
be used to select a specific group.

— if there are multiple occurances for this channel and either the group or index arguments
is None then a warning is issued

* using the group number (keyword argument group) and the channel number (keyword argu-
ment index). Use info method for group and channel numbers

If the raster keyword argument is not None the output is interpolated accordingly.

Parameters name : string

6.2. MDF 35

asammdf Documentation, Release 2.8.1

name of channel
group : int
0-based group index
index : int
0-based channel index
Returns comment : str
found channel comment

get_channel_unit (name=None, group=None, index=None)
Gets channel unit.

Channel can be specified in two ways:
* using the first positional argument name

— if there are multiple occurances for this channel then the group and index arguments can
be used to select a specific group.

— if there are multiple occurances for this channel and either the group or index arguments
is None then a warning is issued

* using the group number (keyword argument group) and the channel number (keyword argu-
ment index). Use info method for group and channel numbers

If the raster keyword argument is not None the output is interpolated accordingly.
Parameters name : string
name of channel
group : int
0-based group index
index : int
0-based channel index
Returns unit : str
found channel unit

get_master (index, data=None)
returns master channel samples for given group

Parameters index : int
group index
data : bytes
data block raw bytes; default None
Returns t: numpy.array
master channel samples

info ()
get MDF information as a dict

36 Chapter 6. API

asammdf Documentation, Release 2.8.1

Examples

>>> mdf = MDF3('test.mdf')
>>> mdf.info ()

iter_get_triggers()
generator that yields triggers

Returns trigger_info : dict
trigger information with the following keys:
e comment : trigger comment
* time : trigger time
* pre_time : trigger pre time
* post_time : trigger post time
* index : trigger index
e group : data group index of trigger

save (dst=", overwrite=None, compression=0)

Save MDF to dst. If dst is not provided the the destination file name is the MDF name. If overwrite is True
then the destination file is overwritten, otherwise the file name is appened with ‘_<cntr>’, were ‘<cntr>’

is the first conter that produces a new file name (that does not already exist in the filesystem).
Parameters dst : str
destination file name, Default “’
overwrite : bool
overwrite flag, default False
compression : int

does nothing for mdf version3; introduced here to share the same API as mdf
version 4 files

MDF version 3 blocks

The following classes implement different MDF version3 blocks.

Channel Class

class asammdf.mdf3.Channel (**kargs)

CNBLOCK class derived from dict
The Channel object can be created in two modes:
* using the stream and address keyword parameters - when reading from file
* using any of the following presented keys - when creating a new Channel
The keys have the following meaning:
¢ id - Block type identifier, always “CN”
* block_len - Block size of this block in bytes (entire CNBLOCK)

6.2.

MDF

37

asammdf Documentation, Release 2.8.1

* next_ch_addr - Pointer to next channel block (CNBLOCK) of this channel group (NIL allowed)
¢ conversion_addr - Pointer to the conversion formula (CCBLOCK) of this signal (NIL allowed)

 source_depend_addr - Pointer to the source-depending extensions (CEBLOCK) of this signal (NIL
allowed)

¢ ch_depend_addr - Pointer to the dependency block (CDBLOCK) of this signal (NIL allowed)
¢ comment_addr - Pointer to the channel comment (TXBLOCK) of this signal (NIL allowed)
* channel_type - Channel type

— 0 = data channel

— 1 = time channel for all signals of this group (in each channel group, exactly one channel must
be defined as time channel). The time stamps recording in a time channel are always relative to
the start time of the measurement defined in HDBLOCK.

 short_name - Short signal name, i.e. the first 31 characters of the ASAM-MCD name of the signal
(end of text should be indicated by 0)

* description - Signal description (end of text should be indicated by 0)

« start_offset - Start offset in bits to determine the first bit of the signal in the data record. The start
offset N is divided into two parts: a “Byte offset” (= N div 8) and a “Bit offset” (= N mod 8). The
channel block can define an “additional Byte offset” (see below) which must be added to the Byte
offset.

¢ bit_count - Number of bits used to encode the value of this signal in a data record

 data_type - Signal data type

* range_{flag - Value range valid flag

e min_raw_value - Minimum signal value that occurred for this signal (raw value)

* max_raw_value - Maximum signal value that occurred for this signal (raw value)

* sampling_rate - Sampling rate for a virtual time channel. Unit [s]

* long_name_addr - Pointer to TXBLOCK that contains the ASAM-MCD long signal name

* display_name_addr - Pointer to TXBLOCK that contains the signal’s display name (NIL allowed)
« aditional_byte_offset - Additional Byte offset of the signal in the data record (default value: 0).

Parameters stream : file handle
mdf file handle
address : int

block address inside mdf file

Examples

>>> with open('test.mdf', 'rb') as mdf:

. chl = Channel (stream=mdf, address=0xBA52)
>>> ch2 = Channel ()

>>> chl.name

'VehicleSpeed'

>>> chl['id']

b'CN'

38

Chapter 6. API

asammdf Documentation, Release 2.8.1

Attributes

name

(str) full channel name

address

(int) block address inside mdf file

dependencies

(list) Isit of channel dependencies

ChannelConversion Class

class asammdf.mdf3.ChannelConversion (**kargs)

CCBLOCK class derived from dict

The ChannelConversion object can be created in two modes:

¢ using the stream and address keyword parameters - when reading from file

* using any of the following presented keys - when creating a new ChannelConversion

The first keys are common for all conversion types, and are followed by conversion specific keys. The keys have

the following meaning:

e common keys

id - Block type identifier, always “CC”

— block_len - Block size of this block in bytes (entire CCBLOCK)

— range_{flag - Physical value range valid flag:

— min_phy_value - Minimum physical signal value that occurred for this signal

— max_phy_value - Maximum physical signal value that occurred for this signal

— unit - Physical unit (string should be terminated with 0)

— conversion_type - Conversion type (formula identifier)

— ref_param_nr - Size information about additional conversion data

* specific keys
— linear conversion
% b - offset

% a - factor

x CANapeHiddenExtra - sometimes CANape appends extra information; not

with MDF specs

ASAM formula conversion

* formula - ecuation as string

polynomial or rational conversion

% P1 .. P6 - factors

% P1 .. P7 - factors

exponential or logarithmic conversion

tabular with or without interpolation (grouped by n)

* raw_{n} - n-th raw integer value (X axis)

compliant

6.2. MDF

39

asammdf Documentation, Release 2.8.1

* phys_{n} - n-th physical value (Y axis)
— text table conversion
* param_val_{n} - n-th integers value (X axis)
% text_{n} - n-th text value (Y axis)
— text range table conversion
* lower_{n} - n-th lower raw value
* upper_{n} - n-th upper raw value

text_{n} - n-th text value

Parameters stream : file handle
mdf file handle
address : int

block address inside mdf file

Examples

>>> with open('test.mdf', 'rb') as mdf:

.. ccl = ChannelConversion (stream=mdf, address=0xBA52)
>>> cc2 = ChannelConversion (conversion_type=0)

>>> ccl['b'], ccl['a']

0, 100.0

Attributes

address \ (int) block address inside mdf file

ChannelDependency Class

class asammdf.mdf3.ChannelDependency (**kargs)
CDBLOCK class derived from dict

Currently the ChannelDependency object can only be created using the stream and address keyword parameters
when reading from file

The keys have the following meaning:
¢ id - Block type identifier, always “CD”
* block_len - Block size of this block in bytes (entire CDBLOCK)
* dependency_type - Dependency type
* sd_nr - Total number of signals dependencies (m)
* for each dependency there is a group of three keys:
— dg_{n} - Pointer to the data group block (DGBLOCK) of signal dependency n
— cg_{n} - Pointer to the channel group block (DGBLOCK) of signal dependency n

40 Chapter 6. API

asammdf Documentation, Release 2.8.1

— ch_{n} - Pointer to the channel block (DGBLOCK) of signal dependency n
* there can also be optional keys which decribe dimensions for the N-dimensional dependencies:

— dim_{n} - Optional: size of dimension n for N-dimensional dependency

Parameters stream : file handle
mdf file handle
address : int

block address inside mdf file

Attributes

address \ (int) block address inside mdf file

ChannelExtension Class

class asammdf.mdf3.ChannelExtension (**kargs)
CEBLOCK class derived from dict

The ChannelExtension object can be created in two modes:
¢ using the stream and address keyword parameters - when reading from file
* using any of the following presented keys - when creating a new ChannelExtension

The first keys are common for all conversion types, and are followed by conversion specific keys. The keys have
the following meaning:

e common keys
— id - Block type identifier, always “CE”
— block_len - Block size of this block in bytes (entire CEBLOCK)
— type - Extension type identifier
* specific keys
— for DIM block
+ module_nr - Number of module
* module_address - Address
description - Description
% BECU_identification - Identification of ECU
reserved(’ - reserved
— for Vector CAN block
* CANL_id - Identifier of CAN message
%+ CAN_ch_index - Index of CAN channel
* message_name - Name of message (string should be terminated by 0)

* sender_name - Name of sender (string should be terminated by 0)

6.2. MDF 41

asammdf Documentation, Release 2.8.1

% reservedO - reserved

Parameters stream : file handle
mdf file handle
address : int

block address inside mdf file

Attributes

| address [(int) block address inside mdf file |

ChannelGroup Class

class asammdf.mdf3.ChannelGroup (**kargs)
CGBLOCK class derived from dict

The ChannelGroup object can be created in two modes:

using the stream and address keyword parameters - when reading from file

using any of the following presented keys - when creating a new ChannelGroup

The keys have the following meaning:

id - Block type identifier, always “CG”

block_len - Block size of this block in bytes (entire CGBLOCK)

next_cg_addr - Pointer to next channel group block (CGBLOCK) (NIL allowed)
first_ch_addr - Pointer to first channel block (CNBLOCK) (NIL allowed)

comment_addr - Pointer to channel group comment text (TXBLOCK) (NIL allowed)

record_id - Record ID, i.e. value of the identifier for a record if the DGBLOCK defines a number of
record IDs > 0

ch_nr - Number of channels (redundant information)

samples_byte_nr - Size of data record in Bytes (without record ID), i.e. size of plain data for a each
recorded sample of this channel group

cycles_nr - Number of records of this type in the data block i.e. number of samples for this channel
group
sample_reduction_addr - only since version 3.3. Pointer to first sample reduction block (SRBLOCK)
(NIL allowed) Default value: NIL.
Parameters stream : file handle
mdf file handle
address : int

block address inside mdf file

42

Chapter 6. API

asammdf Documentation, Release 2.8.1

Examples

>>> with open('test.mdf', 'rb') as mdf:

. cgl = ChannelGroup (stream=mdf, address=0xBA52)
>>> cg2 = ChannelGroup (sample_bytes_nr=32)

>>> hex (cgl.address)

0xBAb52

>>> cgl['id']

b'CG'

Attributes

| address | (int) block address inside mdf file |

DataGroup Class

class asammdf.mdf3.DataGroup (**kargs)
DGBLOCK class derived from dict

The DataGroup object can be created in two modes:
* using the stream and address keyword parameters - when reading from file
* using any of the following presented keys - when creating a new DataGroup
The keys have the following meaning:
* id - Block type identifier, always “DG”
* block_len - Block size of this block in bytes (entire DGBLOCK)
* next_dg_addr - Pointer to next data group block (DGBLOCK) (NIL allowed)
* first_cg_addr - Pointer to first channel group block (CGBLOCK) (NIL allowed)
* trigger_addr - Pointer to trigger block (TRBLOCK) (NIL allowed)
 data_block_addr - Pointer to the data block (see separate chapter on data storage)
* cg_nr - Number of channel groups (redundant information)
* record_id_nr - Number of record IDs in the data block

¢ reservedO - since version 3.2; Reserved

Parameters stream : file handle
mdf file handle
address : int

block address inside mdf file

Attributes

address \ (int) block address inside mdf file

6.2. MDF 43

asammdf Documentation, Release 2.8.1

FileldentificationBlock Class

class asammdf.mdf3.FileIdentificationBlock (**kargs)
IDBLOCK class derived from dict

The TriggerBlock object can be created in two modes:
* using the stream and address keyword parameters - when reading from file
* using the classmethod from_text
The keys have the following meaning:
« file_identification - file identifier
e version_str - format identifier
 program_identification - program identifier
* byte_order - default byte order
* float_format - default floating-point format
e mdf version - version number of MDF format
* code_page - code page number
* reservedO - reserved
* reservedl - reserved
* unfinalized_standard_flags - Standard Flags for unfinalized MDF

¢ unfinalized_custom_flags - Custom Flags for unfinalized MDF

Parameters stream : file handle
mdf file handle
version : int

mdf version in case of new file

Attributes

’ address \ (int) block address inside mdf file; should be 0 always ‘

HeaderBlock Class

class asammdf.mdf3.HeaderBlock (**kargs)
HDBLOCK class derived from dict

The TriggerBlock object can be created in two modes:
e using the stream - when reading from file
* using the classmethod from_text
The keys have the following meaning:
* id - Block type identifier, always “HD”
* block_len - Block size of this block in bytes (entire HDBLOCK)

44

Chapter 6. API

asammdf Documentation, Release 2.8.1

first_dg_addr - Pointer to the first data group block (DGBLOCK)

comment_addr - Pointer to the measurement file comment text (TXBLOCK) (NIL allowed)
program_addr - Pointer to program block (PRBLOCK) (NIL allowed)

dg_nr - Number of data groups (redundant information)

date - Date at which the recording was started in “DD:MM:YYYY” format

time - Time at which the recording was started in “HH:MM:SS” format

author - author name

organization - organization

project - project name

subject - subject

Since version 3.2 the following extra keys were added:

abs_time - Time stamp at which recording was started in nanoseconds.
tz_offset - UTC time offset in hours (= GMT time zone)
time_quality - Time quality class

timer_identification - Timer identification (time source),

Parameters stream : file handle

mdf file handle

Attributes

’ address \ (int) block address inside mdf file; should be 64 always

ProgramBlock Class

class asammdf.v3blocks.ProgramBlock (**kargs)
PRBLOCK class derived from dict

The ProgramBlock object can be created in two modes:

using the stream and address keyword parameters - when reading from file

using any of the following presented keys - when creating a new ProgramBlock

The keys have the following meaning:

id - Block type identifier, always “PR”
block_len - Block size of this block in bytes (entire PRBLOCK)

data - Program-specific data

Parameters stream : file handle
mdf file handle

address : int

6.2. MDF

45

asammdf Documentation, Release 2.8.1

block address inside mdf file

Attributes

address \ (int) block address inside mdf file

SampleReduction Class

class asammdf.v3blocks.SampleReduction (**kargs)
SRBLOCK class derived from dict

Currently the SampleReduction object can only be created by using the stream and address keyword parameters
- when reading from file

The keys have the following meaning:
* id - Block type identifier, always “SR”
* block_len - Block size of this block in bytes (entire SRBLOCK)
* next_sr_addr - Pointer to next sample reduction block (SRBLOCK) (NIL allowed)
* data_block_addr - Pointer to the data block for this sample reduction
* cycles_nr - Number of reduced samples in the data block.

« time_interval - Length of time interval [s] used to calculate the reduced samples.

Parameters stream : file handle
mdf file handle
address : int

block address inside mdf file

Attributes

] address \ (int) block address inside mdf file \

TextBlock Class

class asammdf.mdf3.TextBlock (**kargs)
TXBLOCK class derived from dict

The ProgramBlock object can be created in two modes:
* using the stream and address keyword parameters - when reading from file
* using the classmethod from_text
The keys have the following meaning:
* id - Block type identifier, always “TX”
¢ block_len - Block size of this block in bytes (entire TXBLOCK)

46 Chapter 6. API

asammdf Documentation, Release 2.8.1

* text - Text (new line indicated by CR and LF; end of text indicated by 0)

Parameters stream : file handle

mdf file handle
address : int

block address inside mdf file
text : bytes

bytes for creating a new TextBlock

Examples

>>> tx1 = TextBlock.from_text ('VehicleSpeed")
>>> txl.text_str

'VehicleSpeed'

>>> tx1['text']

b'VehicleSpeed'

Attributes

address | (int) block address inside mdf file
text_str | (str) text data as unicode string

TriggerBlock Class

class asammdf.mdf3.TriggerBlock (**kargs)
TRBLOCK class derived from dict

The TriggerBlock object can be created in two modes:

using the stream and address keyword parameters - when reading from file

using the classmethod from_text

The keys have the following meaning:

id - Block type identifier, always “TX”

block_len - Block size of this block in bytes (entire TRBLOCK)
text_addr - Pointer to trigger comment text (TXBLOCK) (NIL allowed)
trigger_events_nr - Number of trigger events n (0 allowed)
trigger_{n}_time - Trigger time [s] of trigger event n
trigger_{n}_pretime - Pre trigger time [s] of trigger event n

trigger_{n}_posttime - Post trigger time [s] of trigger event n

Parameters stream : file handle

mdf file handle

6.2. MDF

47

asammdf Documentation, Release 2.8.1

address : int

block address inside mdf file

Attributes

MDF4

| address | (int) block address inside mdf file |

asammdf tries to emulate the mdf structure using Python builtin data types.

The header attibute is an OrderedDict that holds the file metadata.

The groups attribute is a dictionary list with the following keys:

data_

group : DataGroup object

channel_group : ChannelGroup object

channels : list of Channel objects with the same order as found in the mdf file

channel_conversions : list of ChannelConversion objects in 1-to-1 relation with the channel list

channel_sources : list of Sourcelnformation objects in 1-to-1 relation with the channels list

data_|

texts

block : DataBlock object

: dictionay containing TextBlock objects used throughout the mdf

channels : list of dictionaries that contain TextBlock objects ralated to each channel
% name_addr : channel name
* comment_addr : channel comment

channel group : list of dictionaries that contain TextBlock objects ralated to each channel group
% acq_name_addr : channel group acquisition comment
+* comment_addr : channel group comment

conversion_tab : list of dictionaries that contain TextBlock objects related to TABX and RTABX channel
conversions

+ text_{n} : n-th text of the VTABR conversion
% default_addr : default text
conversions : list of dictionaries that containt TextBlock obejcts related to channel conversions
* name_addr : converions name
unit_addr : channel unit_addr
% comment_addr : converison comment
+ formula_addr : formula text; only valid for algebraic conversions
sources : list of dictionaries that containt TextBlock obejcts related to channel sources
% name_addr : source name

% path_addr : source path_addr

48

Chapter 6. API

asammdf Documentation, Release 2.8.1

% comment_addr : source comment
The file_history attribute is a list of (FileHistory, TextBlock) pairs .

The channel_db attibute is a dictionary that holds the (data group index, channel index) pair for all signals. This is
used to speed up the ger_signal_by_name method.

The master_db attibute is a dictionary that holds the channel index of the master channel for all data groups. This is
used to speed up the ger_signal_by_name method.

API

class asammdf.mdf4 .MDF4 (name=None, memory="full’, version="4.10")
If the name exist it will be memorised otherwise an empty file will be created that can be later saved to disk

Parameters name : string
mdf file name
memory : str
memory optimization option; default full
* if full the data group binary data block will be memorised in RAM

¢ if low the channel data is read from disk on request, and the metadata is
memorized into RAM

e if minimum only minimal data is memorized into RAM
version : string

mdf file version (‘4.00°, ‘4.10°, ‘4.11°); default ‘4.10’

Attributes
name (string) mdf file name
groups (list) list of data groups
header (HeaderBlock) mdf file header

file_history | (list) list of (FileHistory, TextBlock) pairs

comment (TextBlock) mdf file comment

identifica- | (FileIdentificationBlock) mdf file start block

tion

memory (str) memory optimization option

version (str) mdf version

chan- (dict) used for fast channel access by name; for each name key the value is a list of (group
nels_db index, channel index) tuples

mas- (dict) used for fast master channel access; for each group index key the value is the master
ters_db channel index

append (signals, source_info="Python’, common_timebase=False)
Appends a new data group.

For channel dependencies type Signals, the samples attribute must be a numpy.recarray
Parameters signals : list

list on Signal objects

6.2. MDF 49

asammdf Documentation, Release 2.8.1

source_info : str
source information; default ‘Python’
common_timebase : bool

flag to hint that the signals have the same timebase

Examples

>>> # case 1 conversion type None

>>> sl = np.array([1l, 2, 3, 4, 5])

>>> s2 = np.array([-1, -2, -3, -4, -51)

>>> s3 = np.array([0.1, 0.04, 0.09, 0.16, 0.25])

>>> t = np.array([0.001, 0.002, 0.003, 0.004, 0.0057)

>>> names = ['Positive', 'Negative', 'Float']

>>> units = ['+', '-', '".f']

>>> info = {}

>>> sl = Signal (samples=sl, timstamps=t, unit='+', name='Positive')
>>> 52 = Signal (samples=s2, timstamps=t, unit='-"', name='Negative')
>>> s3 = Signal (samples=s3, timstamps=t, unit='flts', name='Floats"')

>>> mdf = MDEF3('new.mdf')

>>> mdf.append([sl, s2, s3], 'created by asammdf v1.1.0")

>>> # case 2: VTAB conversions from channels inside another file
>>> mdfl = MDF3('in.mdf")

>>> chl = mdfl.get ("Channell VTAB")

>>> ch2 = mdfl.get ("Channel2 VTABR")

>>> sigs = [chl, ch2]

>>> mdf2 = MDF3('out.mdf'")

>>> mdf2.append(sigs, 'created by asammdf v1.1.0")

attach (data, file_name=None, comment=None, compression=True, mime="application/octet-

stream’) o
attach embedded attachment as application/octet-stream

Parameters data : bytes
data to be attached
file_name : str
string file name
comment : str
attachment comment
compression : bool
use compression for embedded attachment data
mime : str
mime type string

close ()
if the MDF was created with memory=False and new channels have been appended, then this must be
called just before the object is not used anymore to clean-up the temporary file

extract_attachment (index)
extract attachment index data. If it is an embedded attachment, then this method creates the new file
according to the attachment file name information

50 Chapter 6. API

asammdf Documentation, Release 2.8.1

Parameters index : int
attachment index

Returns data : bytes | str
attachment data

get (name=None, group=None, index=None, raster=None, samples_only=False, data=None)
Gets channel samples. Channel can be specified in two ways:

* using the first positional argument name

— if there are multiple occurances for this channel then the group and index arguments can
be used to select a specific group.

— if there are multiple occurances for this channel and either the group or index arguments
is None then a warning is issued

¢ using the group number (keyword argument group) and the channel number (keyword argu-
ment index). Use info method for group and channel numbers

If the raster keyword argument is not None the output is interpolated accordingly
Parameters name : string
name of channel
group : int
0-based group index
index : int
0-based channel index
raster : float
time raster in seconds
samples_only : bool

if True return only the channel samples as numpy array; if False return a
Signal object

Returns res : (numpy.array | Signal)

returns Signal if samples_only*=*False (default option), otherwise returns
numpy.array The Signal samples are:

* numpy recarray for channels that have composition/channel array ad-
dress or for channel of type BYTEARRAY, CANOPENDATE, CANOPEN-
TIME

e numpy array for all the rest
Raises MdfError :
* if the channel name is not found
* if the group index is out of range
* if the channel index is out of range

get_channel_comment (name=None, group=None, index=None)
Gets channel comment.

Channel can be specified in two ways:

6.2.

MDF 51

asammdf Documentation, Release 2.8.1

* using the first positional argument name

— if there are multiple occurrences for this channel then the group and index arguments can
be used to select a specific group.

— if there are multiple occurrences for this channel and either the group or index arguments
is None then a warning is issued

¢ using the group number (keyword argument group) and the channel number (keyword argu-
ment index). Use info method for group and channel numbers

If the raster keyword argument is not None the output is interpolated accordingly.
Parameters name : string
name of channel
group : int
0-based group index
index : int
0-based channel index
Returns comment : str
found channel comment

get_channel_unit (name=None, group=None, index=None)
Gets channel unit.

Channel can be specified in two ways:
* using the first positional argument name

— if there are multiple occurrences for this channel then the group and index arguments can
be used to select a specific group.

— if there are multiple occurrences for this channel and either the group or index arguments
is None then a warning is issued

¢ using the group number (keyword argument group) and the channel number (keyword argu-
ment index). Use info method for group and channel numbers

If the raster keyword argument is not None the output is interpolated accordingly.
Parameters name : string
name of channel
group : int
0-based group index
index : int
0-based channel index
Returns unit : str
found channel unit

get_master (index, data=None)
returns master channel samples for given group

Parameters index : int

group index

52 Chapter 6. API

asammdf Documentation, Release 2.8.1

data : bytes
data block raw bytes; default None
Returns t: numpy.array
master channel samples

info ()
get MDF information as a dict

Examples

>>> mdf = MDF4 ('test.mdf')
>>> mdf.info ()

save (dst=", overwrite=None, compression=0)
Save MDF to dst. If dst is not provided the the destination file name is the MDF name. If overwrite is True
then the destination file is overwritten, otherwise the file name is appened with ‘_<cntr>’, were ‘<cntr>’
is the first conter that produces a new file name (that does not already exist in the filesystem)

Parameters dst : str

destination file name, Default “’

overwrite : bool
overwrite flag, default False

compression : int
use compressed data blocks, default 0; valid since version 4.10
* 0 - no compression
¢ 1 - deflate (slower, but produces smaller files)

¢ 2 - transposition + deflate (slowest, but produces the smallest files)

MDF version 4 blocks

The following classes implement different MDF version3 blocks.

AttachmentBlock Class

class asammdf.mdf4.AttachmentBlock (**kargs)
ATBLOCK class

When adding new attachments only embedded attachemnts are allowed, with keyword argument data of type
bytes

Channel Class

class asammdf.mdf4.Channel (**kargs)
CNBLOCK class

6.2. MDF 53

asammdf Documentation, Release 2.8.1

ChannelConversion Class

class asammdf.mdf4.ChannelConversion (**kargs)
CCBLOCK class

ChannelGroup Class

class asammdf.mdf4.ChannelGroup (**kargs)
CGBLOCK class

DataGroup Class

class asammdf.mdf4.DataGroup (**kargs)
DGBLOCK class

DataList Class

class asammdf.mdf4.Datalist (**kargs)
DLBLOCK class

DataBlock Class

class asammdf.mdf4.DataBlock (**kargs)
DTBLOCK class

Parameters address : int
DTBLOCK address inside the file
stream : int

file handle

FileldentificationBlock Class

class asammdf.mdf4.FileIdentificationBlock (**kargs)
IDBLOCK class

HeaderBlock Class

class asammdf.mdf4.HeaderBlock (**kargs)
HDBLOCK class

Sourcelnformation Class

class asammdf.mdf4.SourceInformation (**kargs)
SIBLOCK class

54

Chapter 6. API

asammdf Documentation, Release 2.8.1

FileHistory Class

class asammdf.mdf4.FileHistory (**kargs)
FHBLOCK class

TextBlock Class

class asammdf.mdf4.TextBlock (**kargs)
common TXBLOCK and MDBLOCK class

6.2.2 Notes about memory argument
By default when the MDF object is created all data is loaded into RAM (memory=full). This will give you the best
performance from asammdyf.
However if you reach the physical memory limit asammdf gives you two options:
* memory=low : only the metadata is loaded into RAM, the raw channel data is loaded when needed

* memory=minimum : only minimal data is loaded into RAM.

MDF created with memory="full’

Advantages

* best performance
Disadvantages

* higher RAM usage, there is the chance the file will exceed available RAM
Use case

¢ when data fits inside the system RAM

MDF created with memory="low’

Advantages

* lower RAM usage than memory=full

¢ can handle files that do not fit in the available physical memory
Disadvantages

* slow performance for getting channel data

» must call close method to release the temporary file used in case of appending.

Note: it is advised to use the MDF context manager in this case

Use case
* when default data exceeds available RAM

* it is advised to avoid getting individual channels when using this ioption.

6.2. MDF 55

asammdf Documentation, Release 2.8.1

Instead you can get performance close to memory="‘full® if you use the select method with the list of target channels.

Note: See benchmarks for the effects of using the flag

MDF created with memory="minimum’

Advantages

* lowest RAM usage
* can handle files that do not fit in the available physical memory

* handle big files on 32 bit Python

Disadvantages

* slightly slower performance compared to momeory=low

» must call close method to release the temporary file used in case of appending.

Note: See benchmarks for the effects of using the flag

6.3 Signal

class asammdf.signal.Signal (samples=None, timestamps=None, unit=", name=’

’

, info=None,
. . comment="") . . . : .
The Signal represents a signal described by it’s samples and timestamps. It can do aritmethic operations agains

other Signal or numeric type. The operations are computed in respect to the timestamps (time correct). The
integer signals are not interpolated, instead the last value relative to the current timestamp is used. samples,
timstamps and name are mandatory arguments.

Parameters samples : numpy.array | list | tuple

signal samples

timestamps : numpy.array | list | tuple
signal timestamps

unit : str
signal unit

name : str
signal name

info : dict
dict that contains extra information about the signal , default None

comment : str

signal comment, default ’

astype (np_type)
returns new Signal with samples of dtype np_type

56

Chapter 6. API

asammdf Documentation, Release 2.8.1

cut (start=None, stop=None)
Cuts the signal according to the start and stop values, by using the insertion indexes in the signal’s time
axis.

Parameters start : float
start timestamp for cutting
stop : float
stop timestamp for cutting
Returns result : Signal

new Signal cut from the original

Examples

>>> new_sig = old_sig.cut (1.0, 10.5)
>>> new_sig.timestamps[0], new_sig.timestamps[-1]
0.98, 10.48

extend (other)
extend signal with samples from another signal

Parameters other : Signal

interp (new_timestamps)
returns a new Signal interpolated using the new_timestamps

plot ()
plot Signal samples

6.4 Examples

6.4.1 Working with MDF

from _ future import print_function, division
from asammdf import MDF, Signal, configure
import numpy as np

configure asammdf to optimize disk space usage
configure (integer_compacting=True)

configure asammdf to split data blocks on 10KB blocks
configure (split_data_blocks=True, split_threshold=10%x1024)

-

create 3 Signal objects
timestamps = np.array([0.1, 0.2, 0.3, 0.4, 0.5], dtype=np.float32)

unit$8

s_uint8 = Signal (samples=np.array ([0, 1, 2, 3, 4], dtype=np.uint8),
timestamps=timestamps,
name='Uint8_Signal',
unit="ul")

int32

6.4. Examples 57

asammdf Documentation, Release 2.8.1

s_int32 = Signal (samples=np.array([-20, -10, 0, 10, 20], dtype=np.int32),
timestamps=timestamps,
name='Int32_ Signal',
unit="'14")

floaté64

s_float64 = Signal (samples=np.array([-20, -10, 0, 10, 20], dtype=np.floato6d),
timestamps=timestamps,
name='Float64_Signal',
unit="£8")

create empty MDf version 4.00 file
mdf4 = MDF (version='4.10")

append the 3 signals to the new file
signals = [s_uint8, s_int32, s_float64]
mdf4.append(signals, 'Created by Python')

save new file
mdf4.save ('my_new_file.mf4', overwrite=True)

convert new file to mdf version 3.10 with lower possible RAM usage
mdf3 = mdf4.convert (to="'3.10"', memory='minimum')
print (mdf3.version)

get the float signal
sig = mdf3.get ('Float64_Signal')
print (sig)

cut measurement from 0.3s to end of measurement
mdf4_cut = mdf4d.cut (start=0.3)
mdf4_cut.get ('Float64_Signal') .plot ()

cut measurement from start of measurement to 0.4s
mdf4_cut = mdf4.cut (stop=0.45)
mdf4_cut.get ('Float64_Signal') .plot ()

filter some signals from the file
mdfd4d = mdfd.filter(['Int32_Signal', 'Uint8_Signal'])

save using zipped transpose deflate blocks
mdf4d.save ('out . mf4', compression=2, overwrite=True)

6.4.2 Working with Signal

from _ future import print_function, division
from asammdf import Signal
import numpy as np

create 3 Signal objects with different time stamps

unit8 with 100ms time raster

timestamps = np.array([0.1 = t for t in range(5)], dtype=np.float32)

s_uint8 = Signal (samples=np.array ([t for t in range(5)], dtype=np.uint8),
timestamps=timestamps,

58 Chapter 6. API

asammdf Documentation, Release 2.8.1

name='Uint8_Signal',
unit="ul")

int32 with 50ms time raster

timestamps = np.array([0.05 = t for t in range(10)], dtype=np.float32)

s_int32 = Signal (samples=np.array(list (range(-500, 500, 100)), dtype=np.int32),
timestamps=timestamps,
name='Int32_Signal',
unit="14")

float64 with 300ms time raster

timestamps = np.array([0.3 = t for t in range(3)], dtype=np.float32)

s_float64 = Signal (samples=np.array(list (range (2000, -1000, -1000)), dtype=np.int32),
timestamps=timestamps,
name='Float64_Signal',
unit='f8")

map signals
xs = np.linspace(-1, 1, 50)
ys = np.linspace(-1, 1, 50)
X, Y = np.meshgrid(xs, ys)
vals = np.linspace (0, 180. / np.pi, 100)
phi = np.ones((len(vals), 50, 50), dtype=np.float64)
for i, val in enumerate (vals) :

phi[i] *= val
R =1 - np.sgrt (X**2 + Y*«%2)
samples = np.cos(2 * np.pi » X + phi) * R
print (phi.shape, samples.shape)
timestamps = np.arange(0, 2, 0.02)

s_map = Signal (samples=samples,
timestamps=timestamps,
name='Variable Map Signal',
unit="'dB")

s_map.plot ()

prod = s_float64 * s_uint8

prod.name = 'Uint8_Signal % Float64_Signal'
prod.unit = 'x'

prod.plot ()

pow2 = s_uint8 %% 2

pow2.name = 'Uint8_Signal ~ 2'

pow2.unit = 'ul”2’'

pow?2.plot ()

allsum = s_uint8 + s_int32 + s_float64

allsum.name = 'Uint8_Signal + Int32_Signal + Float64_Signal'
allsum.unit = "+'

allsum.plot ()

inplace operations

pow2 x= -1

pow2.name = '— Uint8_Signal ~ 2'
pow2.plot ()

cut signal

6.4. Examples 59

asammdf Documentation, Release 2.8.1

s_int32.plot ()
cut_signal = s_int32.cut (start=0.2,
cut_signal.plot ()

stop=0.35)

60

Chapter 6. API

CHAPTER /

Benchmarks

asammdf relies heavily on dict objects. Starting with Python 3.6 the dict objects are more compact and ordered
(implementation detail); asammdf uses takes advantage of those changes so for best performance it is advised to use
Python >= 3.6.

7.1 Intro

The benchmarks were done using two test files (available here https://github.com/danielhrisca/asammdf/issues/14) (for
mdf version 3 and 4) of around 170MB. The files contain 183 data groups and a total of 36424 channels.

asamdf 2.8.1 was compared against mdfreader 2.7.3 (latest versions from PyPI). mdfreader seems to be the most used
Python package to handle MDF files, and it also supports both version 3 and 4 of the standard.

The three benchmark cathegories are file open, file save and extracting the data for all channels inside the file(36424
calls). For each cathegory two aspect were noted: elapsed time and peak RAM usage.

7.2 Dependencies

You will need the following packages to be able to run the benchmark script
* psutil

¢ mdfreader

7.3 Usage

Extract the test files from the archive, or provide a folder that contains the files “test.mdf” and “test.mf4”. Run the
module bench.py (see —help option for available options)

61

https://github.com/danielhrisca/asammdf/issues/14

asammdf Documentation, Release 2.8.1

7.4 x64 Python results

Benchmark environment
* 3.6.2 (v3.6.2:5fd33b5, Jul 8 2017, 04:57:36) [MSC v.1900 64 bit (AMD64)]
* Windows-10-10.0.16299-SP0
¢ Intel64 Family 6 Model 69 Stepping 1, Genuinelntel
* 16GB installed RAM
Notations used in the results
¢ full = asammdf MDF object created with memory=full (everything loaded into RAM)

* low = asammdf MDF object created with memory=low (raw channel data not loaded into RAM, but metadata
loaded to RAM)

e minimum = asammdf MDF object created with memory=full (lowest possible RAM usage)
* compress = mdfreader mdf object created with compression=blosc
* noDatal.oading = mdfreader mdf object read with noDatal.oading=True
Files used for benchmark:
* 183 groups
* 36424 channels

7.4.1 Raw data

Open file Time [ms] | RAM [MB]
asammdf 2.8.1 full mdfv3 1100 327
asammdf 2.8.1 low mdfv3 980 174
asammdf 2.8.1 minimum mdfv3 599 86
mdfreader 2.7.3 mdfv3 2567 436
mdfreader 2.7.3 compress mdfv3 4324 135
mdfreader 2.7.3 noDatal.oading mdfv3 | 973 176
asammdf 2.8.1 full mdfv4 2613 390
asammdf 2.8.1 low mdfv4 2491 225
asammdf 2.8.1 minimum mdfv4 1749 97
mdfreader 2.7.3 mdfv4 6457 448
mdfreader 2.7.3 compress mdfv4 8219 147
mdfreader 2.7.3 noDatalLoading mdfv4 | 4221 180

62 Chapter 7. Benchmarks

asammdf Documentation, Release 2.8.1

Save file Time [ms] | RAM [MB]
asammdf 2.8.1 full mdfv3 676 327
asammdf 2.8.1 low mdfv3 541 181
asammdf 2.8.1 minimum mdfv3 1363 95
mdfreader 2.7.3 mdfv3 8013 465
mdfreader 2.7.3 noDatal.oading mdfv3 | 8948 476
mdfreader 2.7.3 compress mdfv3 7629 432
asammdf 2.8.1 full mdfv4 672 395
asammdf 2.8.1 low mdfv4 736 237
asammdf 2.8.1 minimum mdfv4 3127 107
mdfreader 2.7.3 mdfv4 7237 467
mdfreader 2.7.3 noDatal.oading mdfv4 | 8332 473
mdfreader 2.7.3 compress mdfv4 6791 426
Get all channels (36424 calls) | Time [ms] | RAM [MB]
asammdf 2.8.1 full mdfv3 967 333
asammdf 2.8.1 low mdfv3 5690 186
asammdf 2.8.1 minimum mdfv3 | 7296 99
mdfreader 2.7.3 mdfv3 95 436
mdfreader 2.7.3 compress mdfv3 | 531 135
asammdf 2.8.1 full mdfv4 988 397
asammdf 2.8.1 low mdfv4 10572 234
asammdf 2.8.1 minimum mdfv4 13803 108
mdfreader 2.7.3 mdfv4 95 448
mdfreader 2.7.3 compress mdfv4 | 534 148
Convert file Time [ms] | RAM [MB]
asammdf 2.8.1 full v3 to v4 4986 759
asammdf 2.8.1 low v3 to v4 5573 340
asammdf 2.8.1 minimum v3 to v4 | 7049 171
asammdf 2.8.1 full v4 to v3 5705 761
asammdf 2.8.1 low v4 to v3 6510 321
asammdf 2.8.1 minimum v4 to v3 | 10434 142

Merge files Time [ms] | RAM [MB]
asammdf 2.8.1 full v3 12251 1320
asammdf 2.8.1 low v3 14453 464
asammdf 2.8.1 minimum v3 16830 236
mdfreader 2.7.3 v3 15635 983
mdfreader 2.7.3 compress v3 | 20812 993
asammdf 2.8.1 full v4 18172 1441
asammdf 2.8.1 low v4 20083 558
asammdf 2.8.1 minimum v4 | 26374 237
mdfreader 2.7.3 v4 23450 981
mdfreader 2.7.3 compress v4 | 28421 985

7.4. x64 Python results

63

asammdf Documentation, Release 2.8.1

asammdf 2.8.1 full mdfv3
asammdf 2.8.1 low mdfv3
asammdf 2.8.1 minimum mdfv3
mdfreader 2.7.3 mdfv3
mdfreader 2.7.3 compress mdfv3
mdfreader 2.7.3 noDataLoading mdfv3
asammdf 2.8.1 full mdfv4
asammdf 2.8.1 low mdfv4
asammdf 2.8.1 minimum mdfv4
mdfreader 2.7.3 mdfv4
mdfreader 2.7.3 compress mdfv4

mdfreader 2.7.3 noDatalLoading mdfv4

asammdf 2.8.1 full mdfv3
asammdf 2.8.1 low mdfv3
asammdf 2.8.1 minimum mdfv3
mdfreader 2.7.3 mdfv3
mdfreader 2.7.3 compress mdfv3
mdfreader 2.7.3 noDatalLoading mdfv3
asammdf 2.8.1 full mdfv4
asammdf 2.8.1 low mdfv4
asammdf 2.8.1 minimum mdfv4
mdfreader 2.7.3 mdfv4
mdfreader 2.7.3 compress mdfv4

mdfreader 2.7.3 noDatalLoading mdfv4

asammdf 2.8.1 full mdfv3

asammdf 2.8.1 low mdfv3

asammdf 2.8.1 minimum mdfv3
mdfreader 2.7.3 mdfv3

mdfreader 2.7.3 noDataLoading mdfv3
mdfreader 2.7.3 compress mdfv3
asammdf 2.8.1 full mdfv4

asammdf 2.8.1 low mdfv4

asammdf 2.8.1 minimum mdfv4
mdfreader 2.7.3 mdfva4

mdfreader 2.7.3 noDataLoading mdfv4

mdfreader 2.7.3 compress mdfv4

asammdf 2.8.1 full mdfv3

asammdf 2.8.1 low mdfv3

asammdf 2.8.1 minimum mdfv3
mdfreader 2.7.3 mdfv3

mdfreader 2.7.3 noDataLoading mdfv3
mdfreader 2.7.3 compress mdfv3
asammdf 2.8.1 full mdfv4

asammdf 2.8.1 low mdfv4

asammdf 2.8.1 minimum mdfv4
mdfreader 2.7.3 mdfv4

mdfreader 2.7.3 noDatalLoading mdfv4

mdfreader 2.7.3 compress mdfv4

Open test file - time

=

2000

4000 5000 6000 7000 8000

Time [ms]

1000 3000

o

Open test file - ram usage

200
RAM [MB]

o

Save test file - time

—

4000
Time [ms]

o

8000

Save test file - ram usage

RAM [MB]

o

500

64

Chapter 7. Benchmarks

asammdf Documentation, Release 2.8.1

Get all channels (36424 calls) - time

asammdf 2.8.1 full mdfv3
asammdf 2.8.1 low mdfv3
asammdf 2.8.1 minimum mdfv3
mdfreader 2.7.3 mdfv3
mdfreader 2.7.3 compress mdfv3
asammdf 2.8.1 full mdfv4
asammdf 2.8.1 low mdfv4
asammdf 2.8.1 minimum mdfv4
mdfreader 2.7.3 mdfv4

mdfreader 2.7.3 compress mdfv4

™

o

2

8000 10000 12000 14000

Time [ms]

000 4000 6000

Get all channels (36424 calls) - ram usage

asammdf 2.8.1 full mdfv3
asammdf 2.8.1 low mdfv3
asammdf 2.8.1 minimum mdfv3
mdfreader 2.7.3 mdfv3
mdfreader 2.7.3 compress mdfv3
asammdf 2.8.1 full mdfv4
asammdf 2.8.1 low mdfv4
asammdf 2.8.1 minimum mdfv4
mdfreader 2.7.3 mdfv4

mdfreader 2.7.3 compress mdfv4

200
RAM [MB]

300 400

Convert test file - time

asammdf 2.8.1 full v3 to v4
asammdf 2.8.1 low v3 to v4
asammdf 2.8.1 minimum v3 to v4
asammdf 2.8.1 full v4 to v3
asammdf 2.8.1 low v4 to v3

asammdf 2.8.1 minimum v4 to v3

""'I |

o

2000 4000 6000 8000 10000
Time [ms]

Convert test file - ram usage

asammdf 2.8.1 full v3 to v4
asammdf 2.8.1 low v3 to v4
asammdf 2.8.1 minimum v3 to v4
asammdf 2.8.1 full v4 to v3
asammdf 2.8.1 low v4 to v3

asammdf 2.8.1 minimum v4 to v3

=)

100

200 300 400

RAM [MB]

500 600 700

Merge test file - time

asammdf 2.8.1 full v3
asammdf 2.8.1 low v3
asammdf 2.8.1 minimum v3
mdfreader 2.7.3 v3
mdfreader 2.7.3 compress v3
asammdf 2.8.1 full v4
asammdf 2.8.1 low v4
asammdf 2.8.1 minimum v4
mdfreader 2.7.3 v4

mdfreader 2.7.3 compress v4

=)

5000 10000 15000

Time [ms]

20000 25000

7.4.

x64 Python results

65

asammdf Documentation, Release 2.8.1

Merge test file - ram usage

asammdf 2.8.1 low v3 _-
asammdf 2.8.1 minimum v3 .
mdfreader 2.7.3 compress v3 _—_—
asammdf 2.8.1 low v4 _-
asammdf 2.8.1 minimum v4 .
mdfreader 2.7.3 compress v4 _—_—
6 260 460 660 860 10‘00 12b0 14b0

RAM [MB]

7.4.2 Graphical results

7.5 x86 Python results

Benchmark environment
* 3.6.3 (v3.6.3:2c5fed8, Oct 3 2017, 17:26:49) [MSC v.1900 32 bit (Intel)]
* Windows-10-10.0.16299-SP0
* Intel64 Family 6 Model 69 Stepping 1, Genuinelntel
* 16GB installed RAM
Notations used in the results
e full = asammdf MDF object created with memory=full (everything loaded into RAM)

* low = asammdf MDF object created with memory=low (raw channel data not loaded into RAM, but metadata
loaded to RAM)

* minimum = asammdf MDF object created with memory=full (lowest possible RAM usage)
» compress = mdfreader mdf object created with compression=blosc
* noDatal.oading = mdfreader mdf object read with noDatal.oading=True
Files used for benchmark:
* 183 groups
* 36424 channels

66 Chapter 7. Benchmarks

asammdf Documentation, Release 2.8.1

7.5.1 Raw data

Open file Time [ms] | RAM [MB]
asammdf 2.8.1 full mdfv3 1259 260
asammdf 2.8.1 low mdfv3 1076 106
asammdf 2.8.1 minimum mdfv3 767 52
mdfreader 2.7.3 mdfv3 3146 392
mdfreader 2.7.3 noDatalLoading mdfv3 | 1159 102
asammdf 2.8.1 full mdfv4 2792 299
asammdf 2.8.1 low mdfv4 2645 133
asammdf 2.8.1 minimum mdfv4 2070 58
mdfreader 2.7.3 mdfv4 7372 397
mdfreader 2.7.3 noDatal.oading mdfv4 | 4526 104
Save file Time [ms] | RAM [MB]
asammdf 2.8.1 full mdfv3 581 263
asammdf 2.8.1 low mdfv3 688 114
asammdf 2.8.1 minimum mdfv3 1931 58
mdfreader 2.7.3 mdfv3 8902 412
mdfreader 2.7.3 noDatal.oading mdfv3 | 10490 420
asammdf 2.8.1 full mdfv4 843 303
asammdf 2.8.1 low mdfv4 959 143
asammdf 2.8.1 minimum mdfv4 3698 67
mdfreader 2.7.3 mdfv4 8084 417
mdfreader 2.7.3 noDatal.oading mdfv4 | 9524 426
Get all channels (36424 calls) | Time [ms] | RAM [MB]
asammdf 2.8.1 full mdfv3 1278 265
asammdf 2.8.1 low mdfv3 18354 116
asammdf 2.8.1 minimum mdfv3 19288 63
mdfreader 2.7.3 mdfv3 117 392
asammdf 2.8.1 full mdfv4 1266 303
asammdf 2.8.1 low mdfv4 20515 141
asammdf 2.8.1 minimum mdfv4 | 23939 65
mdfreader 2.7.3 mdfv4 116 398
Convert file Time [ms] | RAM [MB]
asammdf 2.8.1 full v3 to v4 5667 638
asammdf 2.8.1 low v3 to v4 6483 215
asammdf 2.8.1 minimum v3 to v4 | 8301 117
asammdf 2.8.1 full v4 to v3 6910 635
asammdf 2.8.1 low v4 to v3 7938 195
asammdf 2.8.1 minimum v4 to v3 | 12352 94

7.5. x86 Python results

67

asammdf Documentation, Release 2.8.1

Merge files Time [ms] | RAM [MB]
asammdf 2.8.1 full v3 14564 1165
asammdf 2.8.1 low v3 16148 319
asammdf 2.8.1 minimum v3 | 19046 180
mdfreader 2.7.3 v3 16765 928
asammdf 2.8.1 full v4 21262 1223
asammdf 2.8.1 low v4 23150 352
asammdf 2.8.1 minimum v4 | 30687 166
mdfreader 2.7.3 v4 25437 919

» mdfreader got a MemoryError

7.5.2 Graphical results

asammdf 2.8.1 full mdfv3

asammdf 2.8.1 low mdfv3

asammdf 2.8.1 minimum mdfv3
mdfreader 2.7.3 mdfv3

mdfreader 2.7.3 noDatalLoading mdfv3
asammdf 2.8.1 full mdfv4

asammdf 2.8.1 low mdfv4

asammdf 2.8.1 minimum mdfv4
mdfreader 2.7.3 mdfv4

mdfreader 2.7.3 noDatalLoading mdfv4

asammdf 2.8.1 full mdfv3

asammdf 2.8.1 low mdfv3

asammdf 2.8.1 minimum mdfv3
mdfreader 2.7.3 mdfv3

mdfreader 2.7.3 noDatalLoading mdfv3
asammdf 2.8.1 full mdfv4

asammdf 2.8.1 low mdfv4

asammdf 2.8.1 minimum mdfv4
mdfreader 2.7.3 mdfv4

mdfreader 2.7.3 noDataLoading mdfv4

asammdf 2.8.1 full mdfv3

asammdf 2.8.1 low mdfv3

asammdf 2.8.1 minimum mdfv3
mdfreader 2.7.3 mdfv3

mdfreader 2.7.3 noDatalLoading mdfv3
asammdf 2.8.1 full mdfv4

asammdf 2.8.1 low mdfv4

asammdf 2.8.1 minimum mdfv4
mdfreader 2.7.3 mdfva4

mdfreader 2.7.3 noDatalLoading mdfv4

Open test file - time

1000 2000 3000 4000 5000 6000 7000

Time [ms]

Open test file - ram usage

o

50 100 150 200 250 300 350 400

RAM [MB]

Save test file - time

—

o

2000 4000 6000 8000 10000
Time [ms]

68

Chapter 7. Benchmarks

asammdf Documentation, Release 2.8.1

Save test file - ram usage

asammdf 2.8.1 full mdfv3

asammdf 2.8.1 low mdfv3

asammdf 2.8.1 minimum mdfv3
mdfreader 2.7.3 mdfv3

mdfreader 2.7.3 noDatalLoading mdfv3
asammdf 2.8.1 full mdfv4

asammdf 2.8.1 low mdfv4

asammdf 2.8.1 minimum mdfv4

mdfreader 2.7.3 mdfv4

mdfreader 2.7.3 noDatalLoading mdfv4

OIIIIIIIIII—
v

0 100 150 200 250 300 350 400
RAM [MB]

Get all channels (36424 calls) - time

asammdf 2.8.1 full mdfv3

asammdf 2.6.1 low mdfv3]
asammdf 2.8.1 minimum mdfv3 I R R

mdfreader 2.7.3 mdfv3
asammdf 2.8.1 full mdfv4

mdfreader 2.7.3 mdfv4

0 5000 10000 15000 20000 25000
Time [ms]

Get all channels (36424 calls) - ram usage

0 100 150 200 250 300 350 400
RAM [MB]

asammdf 2.8.1 full mdfv3
asammdf 2.8.1 low mdfv3
asammdf 2.8.1 minimum mdfv3
mdfreader 2.7.3 mdfv3
asammdf 2.8.1 full mdfv4
asammdf 2.8.1 low mdfv4
asammdf 2.8.1 minimum mdfv4

mdfreader 2.7.3 mdfv4

oNII_I_II_I_I_I—
o

Convert test file - time

asammdf 2.8.1 full v3 to v4 _—
asammdf 2.8.1 low v3 to v4 1]
asammdf 2.8.1 minimum v3 to v4 _—_.
asammdf 2.8.1 full v4 to v3 _—-
asammdf 2.8.1 low v4 to v3 _—_

2000 4000 6000 8000 10000 12000
Time [ms]

Convert test file - ram usage

asammdf 2.8.1 low v3 to v4 _.

asammdf 2.8.1 minimum v3 to v4 .

asammdf 2.8.1 full v4 to v3 ! | | |

asammdf 2.8.1 low v4 to v3

asammdf 2.8.1 minimum v4 to v3

0 100 200 300 400 500 600
RAM [MB]

7.5.

x86 Python results 69

asammdf Documentation, Release 2.8.1

asammdf 2.8.1 full v3
asammdf 2.8.1 low v3
asammdf 2.8.1 minimum v3
mdfreader 2.7.3 v3
asammdf 2.8.1 full v4
asammdf 2.8.1 low v4
asammdf 2.8.1 minimum v4

mdfreader 2.7.3 v4

asammdf 2.8.1 full v3
asammdf 2.8.1 low v3
asammdf 2.8.1 minimum v3
mdfreader 2.7.3 v3
asammdf 2.8.1 full v4
asammdf 2.8.1 low v4
asammdf 2.8.1 minimum v4

mdfreader 2.7.3 v4

Merge test file - time

o

5000 10000 15000 20000 25000 30000

Time [ms]

Merge test file - ram usage

200 400 600 800 1000 1200

RAM [MB]

70

Chapter 7. Benchmarks

CHAPTER 8

Indices and tables

* genindex
* modindex

e search

71

asammdf Documentation, Release 2.8.1

72 Chapter 8. Indices and tables

Index

A

astype() (asammdf.signal.Signal method), 56
AttachmentBlock (class in asammdf.mdf4), 53

C

Channel (class in asammdf.mdf2), 21

Channel (class in asammdf.mdf3), 37

Channel (class in asammdf.mdf4), 53
ChannelConversion (class in asammdf.mdf2), 23
ChannelConversion (class in asammdf.mdf3), 39
ChannelConversion (class in asammdf.mdf4), 54
ChannelDependency (class in asammdf.mdf2), 24
ChannelDependency (class in asammdf.mdf3), 40
ChannelExtension (class in asammdf.mdf2), 25
ChannelExtension (class in asammdf.mdf3), 41
ChannelGroup (class in asammdf.mdf2), 26
ChannelGroup (class in asammdf.mdf3), 42
ChannelGroup (class in asammdf.mdf4), 54
configure() (in module asammdf), 13

convert() (asammdf.mdf MDF method), 14

cut() (asammdf.mdf. MDF method), 14

cut() (asammdf.signal.Signal method), 56

D

DataBlock (class in asammdf.mdf4), 54
DataGroup (class in asammdf.mdf2), 27
DataGroup (class in asammdf.mdf3), 43
DataGroup (class in asammdf.mdf4), 54
DataList (class in asammdf.mdf4), 54

E

export() (asammdf.mdf.MDF method), 15
extend() (asammdf.signal.Signal method), 57

F

FileHistory (class in asammdf.mdf4), 55

FileldentificationBlock (class in asammdf.mdf2), 28
FileldentificationBlock (class in asammdf.mdf3), 44
FileldentificationBlock (class in asammdf.mdf4), 54

filter() (asammdf.mdf. MDF method), 15

H

HeaderBlock (class in asammdf.mdf2), 29
HeaderBlock (class in asammdf.mdf3), 44
HeaderBlock (class in asammdf.mdf4), 54

interp() (asammdf.signal.Signal method), 57
iter_to_pandas() (asammdf.mdf. MDF method), 15

M

MDF (class in asammdf.mdf), 14
merge() (asammdf.mdf.MDF static method), 15

P

plot() (asammdf.signal.Signal method), 57
ProgramBlock (class in asammdf.v2blocks), 29
ProgramBlock (class in asammdf.v3blocks), 45

R

resample() (asammdf.mdf MDF method), 16

S

SampleReduction (class in asammdf.v2blocks), 30
SampleReduction (class in asammdf.v3blocks), 46
select() (asammdf.mdf. MDF method), 16

Signal (class in asammdf.signal), 56
Sourcelnformation (class in asammdf.mdf4), 54

T

TextBlock (class in asammdf.mdf2), 31
TextBlock (class in asammdf.mdf3), 46
TextBlock (class in asammdf.mdf4), 55
TriggerBlock (class in asammdf.mdf2), 31
TriggerBlock (class in asammdf.mdf3), 47

73

	Project goals
	Features
	Major features not implemented (yet)
	Dependencies
	Installation
	API
	Benchmarks
	Indices and tables

