asammdf Documentation
Release 2.5.0

Daniel Hrisca

Sep 12,2017

Contents

Project goals

Features

Major features not implemented (yet)
Dependencies

Installation

API

Benchmarks

Indices and tables

11

13

49

61

asammdf Documentation, Release 2.5.0

asammd]f is a fast parser/editor for ASAM (Associtation for Standardisation of Automation and Measuring Systems)
MDF (Measurement Data Format) files.

asammdf supports both MDF version 3 and 4 formats.

asammdf works on Python 2.7, and Python >= 3.4

Contents 1

asammdf Documentation, Release 2.5.0

2 Contents

CHAPTER 1

Project goals

The main goals for this library are:
* to be faster than the other Python based mdf libraries

* to have clean and easy to understand code base

asammdf Documentation, Release 2.5.0

4 Chapter 1. Project goals

CHAPTER 2

Features

read sorted and unsorted MDF v3 and v4 files
files are loaded in RAM for fast operations
handle large files (exceeding the available RAM) using load_measured_data = False argument

extract channel data, master channel and extra channel information as Signal objects for unified operations with
v3 and v4 files

time domain operation using the Signal class
— Pandas data frames are good if all the channels have the same time based
— usually a measuremetn will have channels from different sources at different rates
— the Signal class facilitates operations with such channels
remove data group by index or by specifing a channel name inside the target data group
append new channels
filter a subset of channels from original mdf file
convert to different mdf version
export to Excel, HDF5 and CSV
add and extract attachments

mdf 4.10 zipped blocks

asammdf Documentation, Release 2.5.0

6 Chapter 2. Features

CHAPTER 3

Major features not implemented (yet)

* for version 3
— functionality related to sample reduction block (but the class is defined)

¢ for version 4

handling of bus logging measurements

handling of unfinnished measurements (mdf 4)

mdf 4 channel arrays

xml schema for TXBLOCK and MDBLOCK

asammdf Documentation, Release 2.5.0

8 Chapter 3. Major features not implemented (yet)

CHAPTER 4

Dependencies

asammdf uses the following libraries
e numpy : the heart that makes all tick
* numexpr : for algebraic and rational channel conversions
» matplotlib : for Signal plotting
e wheel : for installation in virtual environments
optional dependencies needed for exports
* pandas : for DataFrame export
* h5py : for HDF5 export

* xlsxwriter : for Excel export

asammdf Documentation, Release 2.5.0

10 Chapter 4. Dependencies

CHAPTER B

Installation

asammdjf is available on
* github: https://github.com/danielhrisca/asammdf/
» PyPI: https://pypi.org/project/asammdf/

pip install asammdf

11

https://github.com/danielhrisca/asammdf/
https://pypi.org/project/asammdf/

asammdf Documentation, Release 2.5.0

12 Chapter 5. Installation

CHAPTER O

API

MDF

This class acts as a proxy for the MDF3 and MDF4 classes. All attribute access is delegated to the underlying _file
attribute (MDF3 or MDF4 object). See MDF3 and MDF4 for available extra methods.

An empty MDF file is created if the name argument is not provided. If the name argument is provided then the file
must exist in the filesystem, otherwise an exception is raised.

class asammdf . mdf . MDF (name=None, load_measured_data=True, version=3.20’)
Unified access to MDF v3 and v4 files.

Parameters name : string
mdf file name, if provided it must be a real file name
load_measured_data : bool
load data option; default True
* if True the data group binary data block will be loaded in RAM
* if False the channel data is read from disk on request

version : string

mdf file version (‘3.00°, 3.10°, 3.20°, ‘3.30°, ‘4.00°, ‘4.10°, ‘4.11"); default ‘3.20°

Methods

convert

export
filter
iter_to_pandas

13

asammdf Documentation, Release 2.5.0

convert (to, load_measured_data=True)
convert MDF to other versions

Parameters to : str

new mdf version from (‘3.00°, 3.10°, “3.20°, ‘3.30°, ‘4.00’, ‘4.10’, ‘4.11")

load_measured_data : bool

load data option; default True

* if True the data group binary data block will be loaded in RAM

* if False the channel data is stored to a temporary file and read from disk on request
Returns out : MDF

new MDF object

export (format, filename=None)
export MDF to other formats. The MDF file name is used is available, else the filename aragument must

be provided.
Parameters format : string
can be one of the following:

* csv 1 CSV export that uses the ”;” delimiter. This option wil generate a new csv file
for each data group (<MDFNAME>_DataGroup_XX.csv).

* hdf5 : HDFS file output; each MDF data group is mapped to a HDF5 group with the
name ‘DataGroup_xx’ (where xx is the index)

* excel : Excel file output (very slow). This option wil generate a new excel file for
each data group (<MDFNAME>_DataGroup_XX.xIsx).

filename : string
export file name

filter (channels)
return new MDF object that contains only the channels listed in channels argument

Parameters channels : list

list of channel names to be filtered
Returns mdf : MDF

new MDF file

iter_to_pandas ()
generator that yields channel groups as pandas DataFrames

MDF3 and MDF4 classes

MDF3

asammdf tries to emulate the mdf structure using Python builtin data types.
The header attibute is an OrderedDict that holds the file metadata.
The groups attribute is a dictionary list with the following keys:

* data_group : DataGroup object

14 Chapter 6. API

asammdf Documentation, Release 2.5.0

e channel_group : ChannelGroup object
* channels : list of Channel objects with the same order as found in the mdf file
* channel_conversions : list of ChannelConversion objects in 1-to-1 relation with the channel list
* channel_sources : list of Sourcelnformation objects in 1-to-1 relation with the channels list
* chanel_dependencies : list of ChannelDependency objects in a 1-to-1 relation with the channel list
 data_block : DataBlock object
* texts : dictionay containing TextBlock objects used throughout the mdf
— channels : list of dictionaries that contain TextBlock objects ralated to each channel
+ long_name_addr : channel long name
% comment_addr : channel comment
% display_name_addr : channel display name
— channel group : list of dictionaries that contain TextBlock objects ralated to each channel group
% comment_addr : channel group comment

— conversion_tab : list of dictionaries that contain TextBlock objects ralated to VATB and VTABR channel
conversions

+ text_{n} : n-th text of the VTABR conversion
* sorted : bool flag to indicate if the source file was sorted; it is used when load_measured_data = False
* size : data block size; used for lazy laoding of measured data
* record_size : dict of record ID -> record size pairs
The file_history attribute is a TextBlock object.

The channel_db attibute is a dictionary that holds the (data group index, channel index) pair for all signals. This is
used to speed up the get_signal_by_name method.

The master_db attibute is a dictionary that holds the channel index of the master channel for all data groups. This is
used to speed up the get_signal_by_name method.

API

class asammdf .mdf3 .MDF3 (name=None, load_measured_data=True, version="3.20’)
If the name exist it will be loaded otherwise an empty file will be created that can be later saved to disk

Parameters name : string
mdf file name
load_measured_data : bool
load data option; default True
o if True the data group binary data block will be loaded in RAM
* if False the channel data is read from disk on request
version : string

mdf file version (‘3.00’, ‘3.10’, ‘3.20’ or ‘3.30’); default ‘3.20°

6.1. MDF 15

asammdf Documentation, Release 2.5.0

Attributes
name (string) mdf file name
groups (list) list of data groups
header (OrderedDict) mdf file header
file_history (TextBlock) file history text block; can be None
load_measured_dafaool) load measured data option
version (str) mdf version
channels_db (dict) used for fast channel access by name; for each name key the value is a list of
(group index, channel index) tuples
masters_db (dict) used for fast master channel access; for each group index key the value is the
master channel index
Methods

add_trigger
append
close

get

info

iter_get_triggers
remove

save

add_trigger (group, time, pre_time=0, post_time=0, comment="")
add trigger to data group

Parameters group : int
group index
time : float
trigger time
pre_time : float
trigger pre time; default O
post_time : float
trigger post time; default O
comment : str
trigger comment

append (signals, acquisition_info="Python’, common_timebase=False)
Appends a new data group.

For channel depencies type Signals, the samples attribute must be a numpy.recarray
Parameters signals : list
list on Signal objects

acquisition_info : str

16 Chapter 6. API

asammdf Documentation, Release 2.5.0

acquisition information; default ‘Python’
common_timebase : bool

flag to hint that the signals have the same timebase

Examples

>>> # case 1 conversion type None

>>> sl = np.array([1l, 2, 3, 4, 51)

>>> s2 = np.array([-1, -2, -3, -4, -5])

>>> s3 = np.array([0.1, 0.04, 0.09, 0.16, 0.25])

>>> t = np.array([0.001, 0.002, 0.003, 0.004, 0.0057])

>>> names = ['Positive', 'Negative', 'Float']

>>> units = ['+', '-'", '".f']

>>> info = {}

>>> sl = Signal (samples=sl, timstamps=t, unit='+', name='Positive')
>>> 52 = Signal (samples=s2, timstamps=t, unit='-', name='Negative')
>>> g3 = Signal (samples=s3, timstamps=t, unit='flts', name='Floats"')

>>> mdf = MDF3('new.mdf")

>>> mdf.append([sl, s2, s3], 'created by asammdf v1.1.0")

>>> # case 2: VTAB conversions from channels inside another file
>>> mdfl = MDF3('in.mdf")

>>> chl = mdfl.get ("Channell VTAB")

>>> ch2 = mdfl.get ("Channel2_ VTABR")

>>> sigs = [chl, ch2]

>>> mdf2 = MDF3('out.mdf')

>>> mdf2.append(sigs, 'created by asammdf v1.1.0")

close ()
if the MDF was created with load_measured_data=False and new channels have been appended, then this
must be called just before the object is not used anymore to clean-up the temporary file

get (name=None, group=None, index=None, raster=None, samples_only=False)
Gets channel samples. Channel can be specified in two ways:

eusing the first positional argument name

—if there are multiple occurances for this channel then the group and index arguments can be used
to select a specific group.

—if there are multiple occurances for this channel and either the group or index arguments is None
then a warning is issued

eusing the group number (keyword argument group) and the channel number (keyword argument in-
dex). Use info method for group and channel numbers

If the raster keyword argument is not None the output is interpolated accordingly
Parameters name : string
name of channel
group : int
0-based group index
index : int
0-based channel index

raster : float

6.1.

MDF 17

asammdf Documentation, Release 2.5.0

time raster in seconds
samples_only : bool
if True return only the channel samples as numpy array; if False return a Signal object
Returns res : (numpy.array | Signal)
returns Signal if samples_only*=*False (default option), otherwise returns numpy.array
Raises MdfError :
* if the channel name is not found
* if the group index is out of range
* if the channel index is out of range

info ()
get MDF information as a dict

Examples

>>> mdf = MDF3('test.mdf')
>>> mdf.info ()

iter_get_triggers()
generator that yields triggers

Returns trigger_info : dict
trigger information with the following keys:
e comment : trigger comment
* time : trigger time
* pre_time : trigger pre time
* post_time : trigger post time
* index : trigger index
* group : data group index of trigger

remove (group=None, name=None)

Remove data group. Use group or name keyword arguments to identify the group’s index. group has
priority

Parameters name : string
name of the channel inside the data group to be removed
group : int

data group index to be removed

Examples

>>> mdf = MDF3('test.mdf'")
>>> mdf.remove (group=3)
>>> mdf.remove (name="VehicleSpeed"')

18 Chapter 6. API

asammdf Documentation, Release 2.5.0

save (dst="*, overwrite=Fualse)

Save MDF to dst. If dst is not provided the the destination file name is the MDF name. If overwrite is True
then the destination file is overwritten, otherwise the file name is appened with ‘_xx’, were ‘xx’ is the first
conter that produces a new file name (that does not already exist in the filesystem)

Parameters dst : str
destination file name, Default ©’
overwrite : bool

overwrite flag, default False

MDF version 3 blocks

The following classes implement different MDF version3 blocks.

Channel Class

class asammdf .mdf3.Channel (**kargs)

CNBLOCK class derived from dict

The Channel object can be created in two modes:

eusing the file_stream and address keyword parameters - when reading from file

eusing any of the following presented keys - when creating a new Channel

The keys have the following meaning:

*id - Block type identifier, always “CN”

*block_len - Block size of this block in bytes (entire CNBLOCK)

enext_ch_addr - Pointer to next channel block (CNBLOCK) of this channel group (NIL allowed)
econversion_addr - Pointer to the conversion formula (CCBLOCK) of this signal (NIL allowed)

esource_depend_addr - Pointer to the source-depending extensions (CEBLOCK) of this signal (NIL al-
lowed)

ech_depend_addr - Pointer to the dependency block (CDBLOCK) of this signal (NIL allowed)
ecomment_addr - Pointer to the channel comment (TXBLOCK) of this signal (NIL allowed)
echannel_type - Channel type

—0 = data channel

—1 = time channel for all signals of this group (in each channel group, exactly one channel must be
defined as time channel) The time stamps recording in a time channel are always relative to the start
time of the measurement defined in HDBLOCK.

eshort_name - Short signal name, i.e. the first 31 characters of the ASAM-MCD name of the signal (end of
text should be indicated by 0)

edescription - Signal description (end of text should be indicated by 0)

estart_offset - Start offset in bits to determine the first bit of the signal in the data record. The start offset N
is divided into two parts: a “Byte offset” (= N div 8) and a “Bit offset” (= N mod 8). The channel block
can define an “additional Byte offset” (see below) which must be added to the Byte offset.

*bit_count - Number of bits used to encode the value of this signal in a data record

6.1.

MDF 19

asammdf Documentation, Release 2.5.0

edata_type - Signal data type

erange_flag - Value range valid flag

*min_raw_value - Minimum signal value that occurred for this signal (raw value)

*max_raw_value - Maximum signal value that occurred for this signal (raw value)

esampling_rate - Sampling rate for a virtual time channel. Unit [s]

elong_name_addr - Pointer to TXBLOCK that contains the ASAM-MCD long signal name
edisplay_name_addr - Pointer to TXBLOCK that contains the signal’s display name (NIL allowed)

eaditional_byte_offset - Additional Byte offset of the signal in the data record (default value: 0).

Parameters file_stream : file handle
mdf file handle
address : int

block address inside mdf file

Examples
>>> with open('test.mdf', 'rb') as mdf:
. chl = Channel (file_stream=mdf, address=0xBA52)
>>> ch2 = Channel ()
>>> chl.name
'VehicleSpeed'
>>> chl['id"]
b'CN'
Attributes
name (str) full channel name
address (int) block address inside mdf file
dependencies | (list) Isit of channel dependencies

Methods

clear

copy Generic (shallow and deep) copying operations.
fromkeys
get

items

keys

pop
popitem
setdefault
update
values

20 Chapter 6. API

asammdf Documentation, Release 2.5.0

ChannelConversion Class

class asammdf .mdf3.ChannelConversion (**kargs)
CCBLOCK class derived from dict

The ChannelConversion object can be created in two modes:
eusing the file_stream and address keyword parameters - when reading from file
eusing any of the following presented keys - when creating a new ChannelConversion

The first keys are common for all conversion types, and are followed by conversion specific keys. The keys have
the following meaning:

ecommon keys
—id - Block type identifier, always “CC”
—block_len - Block size of this block in bytes (entire CCBLOCK)
—range_flag - Physical value range valid flag:
—min_phy_value - Minimum physical signal value that occurred for this signal
—max_phy_value - Maximum physical signal value that occurred for this signal
—unit - Physical unit (string should be terminated with 0)
—conversion_type - Conversion type (formula identifier)
—ref_param_nr - Size information about additional conversion data
especific keys
—linear conversion
«b - offset
#a - factor

*CANapeHiddenExtra - sometimes CANape appends extra information; not compliant with MDF
specs

—-ASAM formula conversion
«formula - ecuation as string
—polynomial or rational conversion
«P1 .. P6 - factors
—exponential or logarithmic conversion
«P1 .. P7 - factors
—tabular with or without interpolation (grouped by n)
«raw_{n} - n-th raw integer value (X axis)
xphys_{n} - n-th physical value (Y axis)
—text table conversion
xparam_val_{n} - n-th integers value (X axis)
stext_{n} - n-th text value (Y axis)
—text range table conversion

xlower_{n} - n-th lower raw value

6.1. MDF 21

asammdf Documentation, Release 2.5.0

s=upper_{n} - n-th upper raw value

xtext_{n} - n-th text value

Parameters file stream : file handle
mdf file handle
address : int

block address inside mdf file

Examples

>>> with open('test.mdf', 'rb') as mdf:

.. ccl = ChannelConversion (file_stream=mdf, address=0xBA52)
>>> cc2 = ChannelConversion (conversion_type=0)

>>> ccl['b'], ccl['a']

0, 100.0

Attributes

’ address \ (int) block address inside mdf file

Methods

clear
copy Generic (shallow and deep) copying operations.
fromkeys
get

items

keys

pop
popitem
setdefault
update
values

ChannelDependency Class

class asammdf .mdf3.ChannelDependency (**kargs)
CDBLOCK class derived from dict

Currently the ChannelDependency object can only be created using the file_stream and address keyword pa-
rameters when reading from file

The keys have the following meaning:
¢id - Block type identifier, always “CD”
*block_len - Block size of this block in bytes (entire CDBLOCK)
edata - Dependency type

22 Chapter 6. API

asammdf Documentation, Release 2.5.0

*sd_nr - Total number of signals dependencies (m)

for each dependency there is a group of three keys:
—dg_{n} - Pointer to the data group block (DGBLOCK) of signal dependency n
—cg_{n} - Pointer to the channel group block (DGBLOCK) of signal dependency n
—ch_{n} - Pointer to the channel block (DGBLOCK) of signal dependency n

ethere can also be optional keys which decribe dimensions for the N-dimensional dependencies:

—dim_{n} - Optional: size of dimension n for N-dimensional dependency

Parameters file_stream : file handle
mdf file handle
address : int

block address inside mdf file

Attributes

| address | (int) block address inside mdf file

Methods

clear

copy Generic (shallow and deep) copying operations.
fromkeys

get

items

keys

pop
popitem
setdefault
update
values

ChannelExtension Class

class asammdf .mdf3.ChannelExtension (**kargs)
CEBLOCK class derived from dict

The ChannelExtension object can be created in two modes:
eusing the file_stream and address keyword parameters - when reading from file
eusing any of the following presented keys - when creating a new ChannelExtension

The first keys are common for all conversion types, and are followed by conversion specific keys. The keys have
the following meaning:

ecommon keys

—id - Block type identifier, always “CE”

6.1. MDF 23

asammdf Documentation, Release 2.5.0

—block_len - Block size of this block in bytes (entire CEBLOCK)

—type - Extension type identifier

especific keys
—for DIM block

#+module_nr - Number of module
*module_address - Address

xdescription - Description
*ECU_identification - Identification of ECU

sreserved()’ - reserved

—for Vector CAN block

*CAN_id - Identifier of CAN message

#*CAN_ch_index - Index of CAN channel

xmessage_name - Name of message (string should be terminated by 0)
xsender_name - Name of sender (string should be terminated by 0)

sreserved(- reserved

Parameters file_stream : file handle

mdf file handle

address : int

Attributes

block address inside mdf file

| address | (int) block address inside mdf file |

Methods

clear

copy

Generic (shallow and deep) copying operations.

fromkeys

get

items

keys

pop

popitem

setdefault

update

values

24

Chapter 6. API

asammdf Documentation, Release 2.5.0

ChannelGroup Class

class asammdf .mdf3.ChannelGroup (**kargs)

CGBLOCK class derived from dict

The ChannelGroup object can be created in two modes:
eusing the file_stream and address keyword parameters - when reading from file
eusing any of the following presented keys - when creating a new ChannelGroup

The keys have the following meaning:
*id - Block type identifier, always “CG”
*block_len - Block size of this block in bytes (entire CGBLOCK)
enext_cg_addr - Pointer to next channel group block (CGBLOCK) (NIL allowed)
efirst_ch_addr - Pointer to first channel block (CNBLOCK) (NIL allowed)
ecomment_addr - Pointer to channel group comment text (TXBLOCK) (NIL allowed)

srecord_id - Record ID, i.e. value of the identifier for a record if the DGBLOCK defines a number of record
IDs>0

ech_nr - Number of channels (redundant information)

esamples_byte_nr - Size of data record in Bytes (without record ID), i.e. size of plain data for a each
recorded sample of this channel group

ecycles_nr - Number of records of this type in the data block i.e. number of samples for this channel group
esample_reduction_addr - only since version 3.3. Pointer to first sample reduction block (SRBLOCK) (NIL
allowed) Default value: NIL.
Parameters file _stream : file handle
mdf file handle
address : int

block address inside mdf file

Examples

>>> with open('test.mdf', 'rb') as mdf:

. cgl = ChannelGroup (file_stream=mdf, address=0xBA52)
>>> cg2 = ChannelGroup (sample_bytes_nr=32)

>>> hex (cgl.address)

0xBAS52

>>> cgl['id']

b'CG'

Attributes

| address | (int) block address inside mdf file |

6.1. MDF 25

asammdf Documentation, Release 2.5.0

Methods

clear

Ccopy

Generic (shallow and deep) copying operations.

fromkeys

get

items

keys

pop

popitem

setdefault

update

values

DataGroup Class

class asammdf .mdf3.DataGroup (**kargs)

DGBLOCK class derived from dict
The DataGroup object can be created in two modes:
eusing the file_stream and address keyword parameters - when reading from file
eusing any of the following presented keys - when creating a new DataGroup
The keys have the following meaning:
¢id - Block type identifier, always “DG”
*block_len - Block size of this block in bytes (entire DGBLOCK)
enext_dg_addr - Pointer to next data group block (DGBLOCK) (NIL allowed)
*first_cg_addr - Pointer to first channel group block (CGBLOCK) (NIL allowed)
etrigger_addr - Pointer to trigger block (TRBLOCK) (NIL allowed)
edata_block_addr - Pointer to the data block (see separate chapter on data storage)
ecg_nr - Number of channel groups (redundant information)
srecord_id_nr - Number of record IDs in the data block

ereserved(- since version 3.2; Reserved

Parameters file_stream : file handle
mdf file handle
address : int

block address inside mdf file

Attributes

| address | (int) block address inside mdf file |

26

Chapter 6. API

asammdf Documentation, Release 2.5.0

Methods

clear

Ccopy

Generic (shallow and deep) copying operations.

fromkeys

get

items

keys

pop

popitem

setdefault

update

values

FileldentificationBlock Class

class asammdf .mdf3.FileIdentificationBlock (**kargs)

IDBLOCK class derived from dict

The TriggerBlock object can be created in two modes:

eusing the file_stream and address keyword parameters - when reading from file

eusing the classmethod from_text

The keys have the following meaning:
ofile_identification - file identifier
syersion_str - format identifier
eprogram_identification - program identifier
*byte_order - default byte order
float_format - default floating-point format
emdf_version - version number of MDF format
ecode_page - code page number
ereservedO - reserved

ereserved] - reserved

eunfinalized_standard_flags - Standard Flags for unfinalized MDF

eunfinalized_custom_flags - Custom Flags for unfinalized MDF

Parameters file _stream : file handle

mdf file handle

version : int

mdf version in case of new file

6.1. MDF

27

asammdf Documentation, Release 2.5.0

Attributes

| address | (int) block address inside mdf file; should be 0 always

Methods

clear

copy Generic (shallow and deep) copying operations.
fromkeys
get

items

keys

pop
popitem
setdefault
update
values

HeaderBlock Class

class asammdf .mdf3.HeaderBlock (**kargs)
HDBLOCK class derived from dict

The TriggerBlock object can be created in two modes:
eusing the file_stream - when reading from file
eusing the classmethod from_text

The keys have the following meaning:
*id - Block type identifier, always “HD”
*block_len - Block size of this block in bytes (entire HDBLOCK)
«first_dg_addr - Pointer to the first data group block (DGBLOCK)
ecomment_addr - Pointer to the measurement file comment text (TXBLOCK) (NIL allowed)
eprogram_addr - Pointer to program block (PRBLOCK) (NIL allowed)
edg_nr - Number of data groups (redundant information)
edate - Date at which the recording was started in “DD:MM:YYYY” format
time - Time at which the recording was started in “HH:MM:SS” format
eauthor - author name
eorganization - organization
eproject - project name
esubject - subject

Since version 3.2 the following extra keys were added:
eabs_time - Time stamp at which recording was started in nanoseconds.

otz_offset - UTC time offset in hours (= GMT time zone)

28 Chapter 6. API

asammdf Documentation, Release 2.5.0

time_quality - Time quality class

etimer_identification - Timer identification (time source),

Parameters file stream : file handle

mdf file handle

Attributes

| address | (int) block address inside mdf file; should be 64 always

Methods

clear

copy Generic (shallow and deep) copying operations.

fromkeys

get

items

keys

pop

popitem

setdefault

update

values

ProgramBlock Class

class asammdf .mdf3.ProgramBlock (**kargs)
PRBLOCK class derived from dict

The ProgramBlock object can be created in two modes:
eusing the file_stream and address keyword parameters - when reading from file
eusing any of the following presented keys - when creating a new ProgramBlock
The keys have the following meaning:
*id - Block type identifier, always “PR”
*block_len - Block size of this block in bytes (entire PRBLOCK)

edata - Program-specific data

Parameters file_stream : file handle
mdf file handle
address : int

block address inside mdf file

6.1. MDF

29

asammdf Documentation, Release 2.5.0

Attributes

| address | (int) block address inside mdf file

Methods

clear

copy Generic (shallow and deep) copying operations.
fromkeys
get

items

keys

pop
popitem
setdefault
update
values

SampleReduction Class

class asammdf .mdf3.SampleReduction (**kargs)
SRBLOCK class derived from dict

Currently the SampleReduction object can only be created by using the file_stream and address keyword pa-
rameters - when reading from file

The keys have the following meaning:
*id - Block type identifier, always “SR”
*block_len - Block size of this block in bytes (entire SRBLOCK)
enext_sr_addr - Pointer to next sample reduction block (SRBLOCK) (NIL allowed)
edata_block_addr - Pointer to the data block for this sample reduction
ecycles_nr - Number of reduced samples in the data block.

time_interval - Length of time interval [s] used to calculate the reduced samples.

Parameters file_stream : file handle
mdf file handle
address : int

block address inside mdf file

Attributes

| address | (int) block address inside mdf file |

Methods

30 Chapter 6. API

asammdf Documentation, Release 2.5.0

clear

copy Generic (shallow and deep) copying operations.

fromkeys

get

items

keys

pop

popitem

setdefault

update

values

TextBlock Class

class asammdf .mdf3.TextBlock (**kargs)
TXBLOCK class derived from dict

The ProgramBlock object can be created in two modes:
eusing the file_stream and address keyword parameters - when reading from file
eusing the classmethod from_text
The keys have the following meaning:
¢id - Block type identifier, always “TX”
*block_len - Block size of this block in bytes (entire TXBLOCK)
otext - Text (new line indicated by CR and LF; end of text indicated by 0)

Parameters file_stream : file handle
mdf file handle
address : int
block address inside mdf file
text : bytes

bytes for creating a new TextBlock

Examples

>>> tx1 = TextBlock.from_text ('VehicleSpeed")
>>> txl.text_str

'VehicleSpeed'

>>> tx1['text ']

b'VehicleSpeed'

Attributes

address | (int) block address inside mdf file
text_str | (str) text data as unicode string

6.1. MDF

31

asammdf Documentation, Release 2.5.0

Methods

clear

Ccopy

Generic (shallow and deep) copying operations.

from_text

fromkeys

get

items

keys

pop

popitem

setdefault

update

values

TriggerBlock Class

class asammdf .mdf3.TriggerBlock (**kargs)
TRBLOCK class derived from dict

The TriggerBlock object can be created in two modes:
eusing the file_stream and address keyword parameters - when reading from file
eusing the classmethod from_text

The keys have the following meaning:
*id - Block type identifier, always “TX”
*block_len - Block size of this block in bytes (entire TRBLOCK)
etext_addr - Pointer to trigger comment text (TXBLOCK) (NIL allowed)
etrigger_events_nr - Number of trigger events n (0 allowed)
trigger_{n}_time - Trigger time [s] of trigger event n
otrigger_{n}_pretime - Pre trigger time [s] of trigger event n

etrigger_{n}_posttime - Post trigger time [s] of trigger event n

Parameters file_stream : file handle
mdf file handle
address : int

block address inside mdf file

Attributes

’ address \ (int) block address inside mdf file

Methods

32

Chapter 6. API

asammdf Documentation, Release 2.5.0

clear

copy

Generic (shallow and deep) copying operations.

fromkeys

get

items

keys

pop

popitem

setdefault

update

values

MDF4

asammdf tries to emulate the mdf structure using Python builtin data types.

The header attibute is an OrderedDict that holds the file metadata.

The groups attribute is a dictionary list with the following keys:

* data_group : DataGroup object

e channel_group : ChannelGroup object

e channels :

e channel_c

list of Channel objects with the same order as found in the mdf file

onversions : list of ChannelConversion objects in 1-to-1 relation with the channel list

* channel_sources : list of Sourcelnformation objects in 1-to-1 relation with the channels list

* data_block : DataBlock object

* texts : dictionay containing TextBlock objects used throughout the mdf

*k

k

channels : list of dictionaries that contain TextBlock objects ralated to each channel

name_addr : channel name

comment_addr : channel comment

— channel group : list of dictionaries that contain TextBlock objects ralated to each channel group

%

%

acq_name_addr : channel group acquisition comment

comment_addr : channel group comment

— conversion_tab : list of dictionaries that contain TextBlock objects related to TABX and RTABX channel
conversions

%

*k

text_{n} : n-th text of the VTABR conversion

default_addr : default text

— conversions : list of dictionaries that containt TextBlock obejcts related to channel conversions

%

*k

*k

*

name_addr : converions name
unit_addr : channel unit_addr
comment_addr : converison comment

formula_addr : formula text; only valid for algebraic conversions

— sources : list of dictionaries that containt TextBlock obejcts related to channel sources

6.1. MDF

33

asammdf Documentation, Release 2.5.0

* name_addr : source name
+ path_addr : source path_addr
+ comment_addr : source comment
The file_history attribute is a list of (FileHistory, TextBlock) pairs .

The channel_db attibute is a dictionary that holds the (data group index, channel index) pair for all signals. This is
used to speed up the get_signal_by_name method.

The master_db attibute is a dictionary that holds the channel index of the master channel for all data groups. This is
used to speed up the ger_signal_by_name method.

API

class asammdf .mdf4 .MDF4 (name=None, load_measured_data=True, version="‘4.00’)
If the name exist it will be loaded otherwise an empty file will be created that can be later saved to disk

Parameters name : string
mdf file name
load_measured_data : bool
load data option; default True
e if True the data group binary data block will be loaded in RAM
* if False the channel data is read from disk on request
version : string

mdf file version (‘4.00’, ‘4.10°, ‘4.11’); default ‘4.00’

Attributes
name (string) mdf file name
groups (list) list of data groups
header (HeaderBlock) mdf file header
file_history (list) list of (FileHistory, TextBlock) pairs
comment (TextBlock) mdf file comment

identification (FileldentificationBlock) mdf file start block

load_measured_dafaool) load measured data option

version (str) mdf version

channels_db (dict) used for fast channel access by name; for each name key the value is a list of
(group index, channel index) tuples

masters_db (dict) used for fast master channel access; for each group index key the value is the

master channel index

Methods

append
attach
close
\ Continued on next page |

34 Chapter 6. API

asammdf Documentation, Release 2.5.0

Table 6.15 — continued from previous page

extract_attachment
get

info

remove

save

append (signals, source_info="Python’, common_timebase=False)
Appends a new data group.

Parameters signals : list
list on Signal objects
acquisition_info : str
acquisition information; default ‘Python’
common_timebase : bool

flag to hint that the signals have the same timebase

Examples

>>> # case 1 conversion type None

>>> sl = np.array([1l, 2, 3, 4, 51)

>>> s2 = np.array([-1, -2, -3, -4, -51])

>>> s3 = np.array([0.1, 0.04, 0.09, 0.16, 0.25])

>>> t = np.array([0.001, 0.002, 0.003, 0.004, 0.005])

>>> names = ['Positive', 'Negative', 'Float']

>>> units = ['+', '=-', '".f'"]

>>> info = {}

>>> sl = Signal (samples=sl, timstamps=t, unit='+', name='Positive')
>>> 52 = Signal (samples=s2, timstamps=t, unit='-"', name='Negative')
>>> s3 = Signal (samples=s3, timstamps=t, unit='flts', name='Floats')

>>> mdf = MDF4 ('new.mf4")

>>> mdf.append([sl, s2, s3], 'created by asammdf v1.1.0")

>>> # case 2: VTAB conversions from channels inside another file
>>> mdfl = MDF4 ('in.mf4")

>>> chl = mdfl.get ("Channell VTAB")

>>> ch2 = mdfl.get ("Channel2 VTABR")

>>> sigs = [chl, ch2]

>>> mdf2 = MDF4 ('out.mfd")

>>> mdf2.append(sigs, 'created by asammdf v1.1.0")

attach (data, file_name=None, comment=None, compression=True, mime="application/octet-

stream’) o
attach embedded attachment as application/octet-stream

Parameters data : bytes
data to be attached
file_name : str
string file name
comment : str

attachment comment

6.1. MDF 35

asammdf Documentation, Release 2.5.0

compression : bool

use compression for embedded attachment data
mime : str

mime type string

close()
if the MDF was created with load_measured_data=False and new channels have been appended, then this
must be called just before the object is not used anymore to clean-up the temporary file

extract attachment (index)
extract attachemnt index data. If it is an embedded attachment, then this method creates the new file
according to the attachemnt file name information

Parameters index : int
attachment index

Returns data : bytes | str
attachment data

get (name=None, group=None, index=None, raster=None, samples_only=False)
Gets channel samples. Channel can be specified in two ways:

eusing the first positional argument name

—if there are multiple occurances for this channel then the group and index arguments can be used
to select a specific group.

—if there are multiple occurances for this channel and either the group or index arguments is None
then a warning is issued

eusing the group number (keyword argument group) and the channel number (keyword argument in-
dex). Use info method for group and channel numbers

If the raster keyword argument is not None the output is interpolated accordingly
Parameters name : string
name of channel
group : int
0-based group index
index : int
0-based channel index
raster : float
time raster in seconds
samples_only : bool
if True return only the channel samples as numpy array; if False return a Signal object
Returns res : (numpy.array | Signal)
returns Signal if samples_only*=*False (default option), otherwise returns numpy.array
Raises MdfError :
* if the channel name is not found

* if the group index is out of range

36 Chapter 6. API

asammdf Documentation, Release 2.5.0

* if the channel index is out of range

info ()
get MDF information as a dict

Examples

>>> mdf = MDF4 ('test.mdf'")
>>> mdf.info ()

remove (group=None, name=None)
Remove data group. Use group or name keyword arguments to identify the group’s index. group has
priority

Parameters name : string
name of the channel inside the data group to be removed
group : int

data group index to be removed

Examples

>>> mdf = MDF4 ('test.mdf")
>>> mdf.remove (group=3)
>>> mdf.remove (name="'VehicleSpeed")

save (dst="", overwrite=Fualse)
Save MDF to dst. If dst is not provided the the destination file name is the MDF name. If overwrite is True
then the destination file is overwritten, otherwise the file name is appened with ‘°_xx’, were ‘xx’ is the first
conter that produces a new file name (that does not already exist in the filesystem)

Parameters dst : str
destination file name, Default “’
overwrite : bool

overwrite flag, default False

MDF version 4 blocks

The following classes implement different MDF version3 blocks.

AttachmentBlock Class

class asammdf .mdf4 .AttachmentBlock (**kargs)
ATBLOCK class

When adding new attachments only embedded attachemnts are allowed, with keyword argument data of type

bytes

6.1. MDF

37

asammdf Documentation, Release 2.5.0

Methods

clear

copy Generic (shallow and deep) copying operations.
extract

fromkeys

get

items

keys

pop
popitem
setdefault
update
values

Channel Class

class asammdf .mdf4 .Channel (**kargs)
CNBLOCK class

Methods

clear
copy Generic (shallow and deep) copying operations.

fromkeys
get

items

keys

pop
popitem
setdefault
update
values

ChannelConversion Class

class asammdf .mdf4 .ChannelConversion (**kargs)
CCBLOCK class

Methods

clear
copy Generic (shallow and deep) copying operations.

fromkeys
get
items
\ Continued on next page |

38 Chapter 6. API

asammdf Documentation, Release 2.5.0

Table 6.18 — continued from previous page

keys

pop

popitem

setdefault

update

values

ChannelGroup Class

class asammdf .mdf4.ChannelGroup (**kargs)

CGBLOCK class

Methods

clear

copy

Generic (shallow and deep) copying operations.

fromkeys

get

items

keys

pop

popitem

setdefault

update

values

DataGroup Class

class asammdf .mdf4 .DataGroup (**kargs)
DGBLOCK class

Methods

clear

copy

Generic (shallow and deep) copying operations.

fromkeys

get

items

keys

pop

popitem

setdefault

update

values

6.1. MDF

39

asammdf Documentation, Release 2.5.0

DatalList Class

class asammdf .mdf4 .DataList (**kargs)
DLBLOCK class

Methods

clear
copy Generic (shallow and deep) copying operations.

fromkeys
get

items

keys

pop
popitem
setdefault
update
values

DataBlock Class

class asammdf .mdf4 .DataBlock (**kargs)
DTBLOCK class

Parameters address : int
DTBLOCK address inside the file
file_stream : int

file handle

Methods

clear
copy Generic (shallow and deep) copying operations.

fromkeys
get

items

keys

pop
popitem
setdefault
update
values

FileldentificationBlock Class

class asammdf .mdf4 .FileIdentificationBlock (**kargs)
IDBLOCK class

40 Chapter 6. API

asammdf Documentation, Release 2.5.0

Methods

clear

copy Generic (shallow and deep) copying operations.
fromkeys
get

items

keys

pop
popitem
setdefault
update
values

HeaderBlock Class

class asammdf .mdf4 .HeaderBlock (**kargs)
HDBLOCK class

Methods

clear

copy Generic (shallow and deep) copying operations.
fromkeys

get

items

keys

pop
popitem
setdefault
update
values

Sourcelnformation Class

class asammdf .mdf4.SourceInformation (**kargs)
SIBLOCK class

Methods

clear
copy Generic (shallow and deep) copying operations.
fromkeys
get
items
keys
\ Continued on next page |

6.1. MDF 41

asammdf Documentation, Release 2.5.0

Table 6.25 — continued from previous page

pop

popitem

setdefault

update

values

FileHistory Class

class asammdf .mdf4 .FileHistory (**kargs)

FHBLOCK class

Methods

clear

copy

Generic (shallow and deep) copying operations.

fromkeys

get

items

keys

pop

popitem

setdefault

update

values

TextBlock Class

class asammdf .mdf4 . TextBlock (**kargs)
common TXBLOCK and MDBLOCK class

Methods

clear

copy

Generic (shallow and deep) copying operations.

from_text

fromkeys

get

items

keys

pop

popitem

setdefault

update

values

42

Chapter 6. API

asammdf Documentation, Release 2.5.0

classmethod from_text (text, meta=False)
Create a TextBlock from a str or bytes

Parameters text : str | bytes
input text
meta : bool

enable meta text block

Examples

>>> t = TextBlock.from_text (b'speed')

>>> t['id']

b'#4TX"

>>> t.text_str

speed

>>> t = TextBlock.from_text ('mass', meta=True)
>>> t['id']

b'##MD'

Notes about /load_measured_data argument

By default when the MDF object is created the raw channel data is loaded into RAM. This will give you the best

performance from asammdyf.

However if you reach the physical memmory limit asammdf gives you the option use the load_measured_data flag.

In this case the raw channel data is not read.

MDF defaults

Advantages

* best performance
Disadvantages

* higher RAM usage, there is the chance the file will exceed available RAM
Use case

* when data fits inside the system RAM

MDF with load_measured_data

Advantages

* lowest RAM usage

* can handle files that do not fit in the available physical memory
Disadvantages

* slow performance for getting channel data
Use case

* when default data exceeds available RAM

6.1. MDF

43

asammdf Documentation, Release 2.5.0

Note: See benchmarks for the effects of using the flag

Signal

class asammdf.signal.Signal (samples=None, timestamps=None, unit=""*, name="", conversion=None,

comment="")
The Signal represents a signal described by it’s samples and timestamps. It can do aritmethic operations agains

other Signal or numeric type. The operations are computed in respect to the timestamps (time correct). The
integer signals are not interpolated, instead the last value relative to the current timestamp is used. samples,
timstamps and name are mandatory arguments.

Parameters samples : numpy.array | list | tuple

signal samples

timestamps : numpy.array | list | tuple
signal timestamps

unit : str
signal unit

name : str
signal name

conversion : dict
dict describing the channel conversion , default None

comment : str

signal comment, default *’

Methods

astype
cut
interp
plot

astype (np_type)
returns new Signal with samples of dtype np_type

cut (start, stop)

Cuts the signal according to the start and stop values, by using the insertion indexes in the signal’s time
axis.

Parameters start : float
start timestamp for cutting
stop : float

stop timestamp for cutting

44 Chapter 6. API

asammdf Documentation, Release 2.5.0

Returns outsig : Signal

new Signal cut from the original

Examples

>>> new_sig = old_sig.cut (1.0, 10.5)
>>> new_sig.timestamps[0], new_sig.timestamps[-1]
0.98, 10.48

interp (new_timestamps)
returns a new Signal interpolated using the new_timestamps

plot ()
plot Signal samples

Examples

Working with MDF

from asammdf import MDF, Signal
import numpy as np

create 3 Signal objects
timestamps = np.array([0.1, 0.2, 0.3, 0.4, 0.5], dtype=np.float32)

unit$8

s_uint8 = Signal (samples=np.array ([0, 1, 2, 3, 4], dtype=np.uint8),
timestamps=timestamps,
name='Uint8_Signal',
unit="ul")

int32

s_int32 = Signal (samples=np.array([-20, -10, 0, 10, 20], dtype=np.int32),
timestamps=timestamps,
name='Int32_Signal',
unit="'14")

floaté64

s_float64 = Signal (samples=np.array([-20, -10, 0, 10, 20], dtype=np.int32),
timestamps=timestamps,
name='Float64_Signal',
unit="£8")

create empty MDf version 4.00 file
mdf4 = MDF (version='4.00")

append the 3 signals to the new file
signals = [s_uint8, s_int32, s_float64]
mdf4.append(signals, 'Created by Python')

save new file
mdf4d.save ('my_new_file.mf4d'")

6.3. Examples

45

asammdf Documentation, Release 2.5.0

convert new file to mdf version 3.10 with compression of raw channel data
mdf3 = mdf4.convert (to="'3.10"', compression=True)

print (mdf3.version)

prints >>> 3.10

get the float signal

sig = mdf3.get ('Float64_Signal')

print (sig)

prints >>> Signal { name="Float64 Signal": s=[-20 -10 0 10 20] t=[0.1
. 0.2 0.30000001 0.40000001 0.5] unit="f8" o
—conversion=None }

[

Working with Signal

from asammdf import Signal
import numpy as np

create 3 Signal objects with different time stamps

unit8 with 100ms time raster
timestamps = np.array([0.1 x t for t in range(5)], dtype=np.float32)
s_uint8 = Signal (samples=np.array ([t for t in range(5)], dtype=np.uint8),
timestamps=timestamps,
name='Uint8_Signal',
unit="ul")

int32 with 50ms time raster

timestamps = np.array([0.05 % t for t in range(10)], dtype=np.float32)

s_int32 = Signal (samples=np.array(list (range(-500, 500, 100)), dtype=np.int32),
timestamps=timestamps,
name='Int32_Signal',
unit="'14")

float64 with 300ms time raster

timestamps = np.array([0.3 = t for t in range(3)], dtype=np.float32)

s_float64 = Signal (samples=np.array(list (range (2000, -1000, -1000)), dtype=np.int32),
timestamps=timestamps,
name='Float64_Signal',
unit="'£8")

prod = s_float64 » s_uint8

prod.name = 'Uint8_Signal * Float64_Signal'
prod.unit = "«'

prod.plot ()

pow2 = s_uint8 *x 2

pow2.name = 'Uint8_Signal ~ 2'

pow2.unit = 'ul”2’'

pow?2.plot ()

allsum = s_uint8 + s_int32 + s_floatoc4

allsum.name = 'Uint8_Signal + Int32_Signal + Float64_Signal'
allsum.unit = '+'

allsum.plot ()

46 Chapter 6. API

asammdf Documentation, Release 2.5.0

inplace operations

pow2 x= -1
pow2.name = '— Uint8_Signal ~ 2'

pow2.plot ()

6.3. Examples

asammdf Documentation, Release 2.5.0

48 Chapter 6. API

CHAPTER /

Benchmarks

asammdf relies heavily on dict objects. Starting with Python 3.6 the dict objects are more compact and ordered
(implementation detail); asammdf uses takes advantage of those changes so for best performance it is advised to use
Python >= 3.6.

Intro

The benchmarks were done using two test files (for mdf version 3 and 4) of around 170MB. The files contain 183 data
groups and a total of 36424 channels.

asamdf 2.5.0 was compared against mdfreader 0.2.5 (latest versions from PyPI). mdfreader seems to be the most used
Python package to handle MDF files, and it also supports both version 3 and 4 of the standard.

The three benchmark cathegories are file open, file save and extracting the data for all channels inside the file(36424
calls). For each cathegory two aspect were noted: elapsed time and peak RAM usage.

Dependencies

You will need the following packages to be able to run the benchmark script
* psutil

¢ mdfreader

x64 Python results

The test environment used for 64 bit tests had:
e 3.6.2 (v3.6.2:5fd33b5, Jul 8 2017, 04:57:36) [MSC v.1900 64 bit (AMD64)]
¢ Windows-10-10.0.14393-SP0

49

asammdf Documentation, Release 2.5.0

* Intel64 Family 6 Model 94 Stepping 3, Genuinelntel

¢ 16GB installed RAM

Notations used in the results:

* nodata = asammdf MDF object created with load_measured_data=False (raw channel data not loaded into RAM)

Files used for benchmark:
* 183 groups
¢ 36424 channels

Raw data
Open file Time [ms] | RAM [MB]
asammdf 2.5.0 mdfv3 821 371
asammdf 2.5.0 nodata mdfv3 | 653 191
mdfreader 0.2.5 mdfv3 2909 537
asammdf 2.5.0 mdfv4 1694 455
asammdf 2.5.0 nodata mdfv4 | 1297 260
mdfreader 0.2.5 mdfv4 31074 748
Save file Time [ms] | RAM [MB]
asammdf 2.5.0 mdfv3 393 373
asammdf 2.5.0 nodata mdfv3 | 383 198
mdfreader 0.2.5 mdfv3 21464 1997
asammdf 2.5.0 mdfv4 586 465
asammdf 2.5.0 nodata mdfv4 | 550 275
mdfreader 0.2.5 mdfv4 19036 2795
Get all channels (36424 calls) | Time [ms] | RAM [MB]
asammdf 2.5.0 mdfv3 613 381
asammdf 2.5.0 nodata mdfv3 9161 207
mdfreader 0.2.5 mdfv3 28 536
asammdf 2.5.0 mdfv4 606 464
asammdf 2.5.0 nodata mdfv4 12403 275
mdfreader 0.2.5 mdfv4 40 748
Convert file Time [ms] | RAM [MB]
asammdf 2.5.0 v3 to v4 4773 885
asammdf 2.5.0 v3 to v4 nodata | 21903 605
asammdf 2.5.0 v4 to v3 4823 882
asammdf 2.5.0 v4 to v3 nodata | 26090 740

50

Chapter 7. Benchmarks

asammdf Documentation, Release 2.5.0

Graphical results

Open test file - time

asammdf 2.5.0 mdfv3
asammdf 2.5.0 nodata mdfv3
mdfreader 0.2.5 mdfv3
asammdf 2.5.0 mdfv4

asammdf 2.5.0 nodata mdfv4

0 5000 10000 15000 20000 25000 30000
Time [ms]

Open test file - ram usage

asammdf 2.5.0 mdfv3 --.
asammdf 2.5.0 nodata mdfv3 -
asammdf 2.5.0 nodata mdfv4 -.

0 100 200 300 400 500 600 700
RAM [MB]

mdfreader 0.2.5 mdfv3

mdfreader 0.2.5 mdfv4

7.3. x64 Python results 51

asammdf Documentation, Release 2.5.0

Save test file - time

asammdf 2.5.0 mdfv3

asammdf 2.5.0 nodata mdfv3

asammdf 2.5.0 mdfv4

asammdf 2.5.0 nodata mdfv4

5000 10000 15000 20000
Time [ms]

o ~

Save test file - ram usage

asammdf 2.5.0 mdfv3

asammdf 2.5.0 nodata mdfv3

asammdf 2.5.0 mdfv4

asammdf 2.5.0 nodata mdfv4

500 1000 1500 2000 2500
RAM [MB]

o ~

52 Chapter 7. Benchmarks

asammdf Documentation, Release 2.5.0

Get all channels (36424 calls) - time

asammdf 2.5.0 mdfv3

mdfreader 0.2.5 mdfv3

asammdf 2.5.0 mdfv4

mdfreader 0.2.5 mdfv4

0 2000 4000 6000 8000 10000 12000
Time [ms]

Get all channels (36424 calls) - ram usage

asammdf 2.5.0 nodata mdfv3 -|
asammdf 2.5.0 nodata mdfv4 -.

0 100 200 300 400 500 600 700
RAM [MB]

mdfreader 0.2.5 mdfv3

mdfreader 0.2.5 mdfv4

7.3. x64 Python results 53

asammdf Documentation, Release 2.5.0

Convert test file - time

asammdf 2.5.0 v3 to v4

asammdf 2.5.0 v4 to v3

0 5000 10000 15000 20000 25000
Time [ms]

Convert test file - ram usage

asammdf 2.5.0 v3 to v4 nodata

200 400 600 800
RAM [MB]

o ~

x86 Python results

The test environment used for 32 bit tests had:
* 3.6.1 (v3.6.1:69¢0db5, Mar 21 2017, 17:54:52) [MSC v.1900 32 bit (Intel)]
* Windows-10-10.0.14393-SP0
¢ Intel64 Family 6 Model 94 Stepping 3, Genuinelntel
* 16GB installed RAM

Notations used in the results:

54 Chapter 7. Benchmarks

asammdf Documentation, Release 2.5.0

* nodata = asammdf MDF object created with load_measured_data=False (raw channel data not loaded into RAM)

Files used for benchmark:
* 183 groups
¢ 36424 channels

Raw data
Open file Time [ms] | RAM [MB]
asammdf 2.5.0 mdfv3 1009 289
asammdf 2.5.0 nodata mdfv3 | 663 118
mdfreader 0.2.5 mdfv3 3705 454
asammdf 2.5.0 mdfv4 2031 343
asammdf 2.5.0 nodata mdfv4 | 1690 161
mdfreader 0.2.5 mdfv4 42315 576
Save file Time [ms] | RAM [MB]
asammdf 2.5.0 mdfv3 439 293
asammdf 2.5.0 nodata mdfv3 | 462 126
mdfreader 0.2.5 mdfv3 19759 1224
asammdf 2.5.0 mdfv4 691 354
asammdf 2.5.0 nodata mdfv4 | 712 174
mdfreader 0.2.5 mdfv4 17415 1686
Get all channels (36424 calls) | Time [ms] | RAM [MB]
asammdf 2.5.0 mdfv3 807 298
asammdf 2.5.0 nodata mdfv3 18500 132
mdfreader 0.2.5 mdfv3 36 454
asammdf 2.5.0 mdfv4 804 349
asammdf 2.5.0 nodata mdfv4 21315 171
mdfreader 0.2.5 mdfv4 49 577
Convert file Time [ms] | RAM [MB]
asammdf 2.5.0 v3 to v4 5834 709
asammdf 2.5.0 v3 to v4 nodata | 28427 494
asammdf 2.5.0 v4 to v3 5474 710
asammdf 2.5.0 v4 to v3 nodata | 30423 638

7.4. x86 Python results

55

asammdf Documentation, Release 2.5.0

Graphical results

Open test file - time

asammdf 2.5.0 mdfv3

asammdf 2.5.0 nodata mdfv3

mdfreader 0.2.5 mdfv3

asammdf 2.5.0 mdfv4

asammdf 2.5.0 nodata mdfv4

mdfreader 0.2.5 mdfv4

o ~

5000 10000 15000 20000 25000 30000 35000 40000
Time [ms]

Open test file - ram usage

asammdf 2.5.0 mdfv3

asammdf 2.5.0 nodata mdfv3

mdfreader 0.2.5 mdfv3

asammdf 2.5.0 mdfv4

asammdf 2.5.0 nodata mdfv4

mdfreader 0.2.5 mdfv4

100 200 300 400 500 600
RAM [MB]

56

Chapter 7. Benchmarks

asammdf Documentation, Release 2.5.0

asammdf 2.5.0 mdfv3

asammdf 2.5.0 nodata mdfv3

mdfreader 0.2.5 mdfv3

asammdf 2.5.0 mdfv4

asammdf 2.5.0 nodata mdfv4

mdfreader 0.2.5 mdfv4

asammdf 2.5.0 mdfv3

asammdf 2.5.0 nodata mdfv3

mdfreader 0.2.5 mdfv3

asammdf 2.5.0 mdfv4

asammdf 2.5.0 nodata mdfv4

mdfreader 0.2.5 mdfv4

Save test file - time

2500 5000 7500 10000 12500 15000 17500 20000
Time [ms]

Save test file - ram usage

200 400 600 800 1000 1200 1400 1600
RAM [MB]

7.4. x86 Python results

57

asammdf Documentation, Release 2.5.0

Get all channels (36424 calls) - time

asammdf 2.5.0 mdfv3

mdfreader 0.2.5 mdfv3

asammdf 2.5.0 mdfv4

mdfreader 0.2.5 mdfv4

0 2500 5000 7500 10000 12500 15000 17500 20000
Time [ms]

Get all channels (36424 calls) - ram usage

asammdf 2.5.0 nodata mdfv3 I
asammdf 2.5.0 nodata mdfv4 -

0 100 200 300 400 500 600
RAM [MB]

mdfreader 0.2.5 mdfv3

mdfreader 0.2.5 mdfv4

58 Chapter 7. Benchmarks

asammdf Documentation, Release 2.5.0

Convert test file - time

asammdf 2.5.0 v3 to v4

asammdf 2.5.0 v4 to v3

0 5000 10000 15000 20000 25000 30000
Time [ms]

Convert test file - ram usage

asammdf 2.5.0 v3 to v4 nodata

asammdf 2.5.0 v4 to v3

asammdf 2.5.0 v4 to v3 nodata

0 100 200 300 400 500 600 700
RAM [MB]

7.4. x86 Python results

59

asammdf Documentation, Release 2.5.0

60 Chapter 7. Benchmarks

CHAPTER 8

Indices and tables

* genindex
* modindex

e search

61

asammdf Documentation, Release 2.5.0

62 Chapter 8. Indices and tables

Index

A

add_trigger() (asammdf.mdf3.MDF3 method), 16
append() (asammdf.mdf3.MDF3 method), 16
append() (asammdf.mdf4.MDF4 method), 35
astype() (asammdf.signal.Signal method), 44
attach() (asammdf.mdf4. MDF4 method), 35
AttachmentBlock (class in asammdf.mdf4), 37

C

Channel (class in asammdf.mdf3), 19

Channel (class in asammdf.mdf4), 38
ChannelConversion (class in asammdf.mdf3), 21
ChannelConversion (class in asammdf.mdf4), 38
ChannelDependency (class in asammdf.mdf3), 22
ChannelExtension (class in asammdf.mdf3), 23
ChannelGroup (class in asammdf.mdf3), 25
ChannelGroup (class in asammdf.mdf4), 39
close() (asammdf.mdf3.MDF3 method), 17
close() (asammdf.mdf4.MDF4 method), 36
convert() (asammdf.mdf MDF method), 14

cut() (asammdf.signal.Signal method), 44

D

DataBlock (class in asammdf.mdf4), 40
DataGroup (class in asammdf.mdf3), 26
DataGroup (class in asammdf.mdf4), 39
DataList (class in asammdf.mdf4), 40

E

export() (asammdf.mdf. MDF method), 14
extract_attachment() (asammdf.mdf4.MDF4 method), 36

F

FileHistory (class in asammdf.mdf4), 42
FileldentificationBlock (class in asammdf.mdf3), 27
FileldentificationBlock (class in asammdf.mdf4), 40
filter() (asammdf.mdf. MDF method), 14

from_text() (asammdf.mdf4.TextBlock class method), 43

G

get() (asammdf.mdf3.MDF3 method), 17
get() (asammdf.mdf4.MDF4 method), 36

H

HeaderBlock (class in asammdf.mdf3), 28
HeaderBlock (class in asammdf.mdf4), 41

info() (asammdf.mdf3.MDF3 method), 18

info() (asammdf.mdf4.MDF4 method), 37

interp() (asammdf.signal.Signal method), 45
iter_get_triggers() (asammdf.mdf3.MDF3 method), 18
iter_to_pandas() (asammdf.mdf. MDF method), 14

M

MDF (class in asammdf.mdf), 13
MDEF3 (class in asammdf.mdf3), 15
MDF4 (class in asammdf.mdf4), 34

P

plot() (asammdf.signal.Signal method), 45
ProgramBlock (class in asammdf.mdf3), 29

R

remove() (asammdf.mdf3.MDF3 method), 18
remove() (asammdf.mdf4. MDF4 method), 37

S

SampleReduction (class in asammdf.mdf3), 30
save() (asammdf.mdf3.MDF3 method), 18
save() (asammdf.mdf4. MDF4 method), 37
Signal (class in asammdf.signal), 44
Sourcelnformation (class in asammdf.mdf4), 41

T

TextBlock (class in asammdf.mdf3), 31
TextBlock (class in asammdf.mdf4), 42
TriggerBlock (class in asammdf.mdf3), 32

63

	Project goals
	Features
	Major features not implemented (yet)
	Dependencies
	Installation
	API
	Benchmarks
	Indices and tables

