
asammdf Documentation
Release 2.2.0

Daniel Hrisca

Aug 21, 2017

Contents

1 Project goals 3

2 Features 5

3 Major features still not implemented 7

4 Dependencies 9

5 Features 11

6 Major features still not implemented 13

7 Installation 15

8 API 17

9 Benchmarks 53

10 Indices and tables 63

i

ii

asammdf Documentation, Release 2.2.0

asammdf is a fast parser/editor for ASAM (Associtation for Standardisation of Automation and Measuring Systems)
MDF (Measurement Data Format) files.

asammdf supports both MDF version 3 and 4 formats.

asammdf works on Python 2.7, and Python >= 3.4

Contents 1

asammdf Documentation, Release 2.2.0

2 Contents

CHAPTER 1

Project goals

The main goals for this library are:

• to be faster than the other Python based mdf libraries

• to have clean and easy to understand code base

3

asammdf Documentation, Release 2.2.0

4 Chapter 1. Project goals

CHAPTER 2

Features

• read sorted and unsorted MDF v3 and v4 files

• files are loaded in RAM for fast operations

– for low memory computers or for large data files there is the option to load only the metadata and leave
the raw channel data (the samples) unread; this of course will mean slower channel data access speed

• extract channel data, master channel and extra channel information as Signal objects for unified operations with
v3 and v4 files

• time domain operation using the Signal class

– Pandas data frames are good if all the channels have the same time based

– usually a measuremetn will have channels from different sources at different rates

– the Signal class facilitates operations with such channels

• remove data group by index or by specifing a channel name inside the target data group

• append new channels

• filter a subset of channels from original mdf file

• convert to different mdf version

• add and extract attachments

• mdf 4.10 zipped blocks

5

asammdf Documentation, Release 2.2.0

6 Chapter 2. Features

CHAPTER 3

Major features still not implemented

• functionality related to sample reduction block (but the class is defined)

• mdf 3 channel dependency save and append (only reading is implemented)

• handling of unfinnished measurements (mdf 4)

• mdf 4 channel arrays

• xml schema for TXBLOCK and MDBLOCK

7

asammdf Documentation, Release 2.2.0

8 Chapter 3. Major features still not implemented

CHAPTER 4

Dependencies

asammdf uses the following libraries

• numpy : the heart that makes all tick

• numexpr : for algebraic and rational channel conversions

• blosc : optionally used for in memmory raw channel data compression

• matplotlib : for Signal plotting

• pandas : for DataFrame export

9

asammdf Documentation, Release 2.2.0

10 Chapter 4. Dependencies

CHAPTER 5

Features

• read sorted and unsorted MDF v3 and v4 files

• files are loaded in RAM for fast operations

– for low memory computers or for large data files there is the option to load only the metadata and leave
the raw channel data (the samples) unread; this of course will mean slower channel data access speed

• extract channel data, master channel and extra channel information as Signal objects for unified operations with
v3 and v4 files

• time domain operation using the Signal class

– Pandas data frames are good if all the channels have the same time based

– usually a measuremetn will have channels from different sources at different rates

– the Signal class facilitates operations with such channels

• remove data group by index or by specifing a channel name inside the target data group

• create new mdf files from scratch

• append new channels

• convert to different mdf version

• add and extract attachments

• mdf 4.10 zipped blocks

• mdf 4 structure channels

11

asammdf Documentation, Release 2.2.0

12 Chapter 5. Features

CHAPTER 6

Major features still not implemented

• functionality related to sample reduction block (but the class is defined)

• mdf 3 channel dependency functionality

• functionality related to trigger blocks (but the class is defined)

• handling of unfinnished measurements (mdf 4)

• mdf 4 channel arrays

• xml schema for TXBLOCK and MDBLOCK

13

asammdf Documentation, Release 2.2.0

14 Chapter 6. Major features still not implemented

CHAPTER 7

Installation

asammdf is available on

• github: https://github.com/danielhrisca/asammdf/

• PyPI: https://pypi.org/project/asammdf/

pip install asammdf

15

https://github.com/danielhrisca/asammdf/
https://pypi.org/project/asammdf/

asammdf Documentation, Release 2.2.0

16 Chapter 7. Installation

CHAPTER 8

API

MDF

This class acts as a proxy for the MDF3 and MDF4 classes. All attribute access is delegated to the underling file
attribute (MDF3 or MDF4 object). See MDF3 and MDF4 for available extra methods.

class asammdf.mdf.MDF(name=None, load_measured_data=True, compression=False, version=‘3.20’)
Unified access to MDF v3 and v4 files.

Parameters name : string

mdf file name

load_measured_data : bool

load data option; default True

• if True the data group binary data block will be loaded in RAM

• if False the channel data is read from disk on request

compression : bool

compression option for data group binary data block; default False

version : string

mdf file version (‘3.00’, ‘3.10’, ‘3.20’, ‘3.30’, ‘4.00’, ‘4.10’, ‘4.11’); default ‘3.20’

Methods

convert
filter
iter_to_pandas

17

asammdf Documentation, Release 2.2.0

convert(to, compression=False)
convert MDF to other versions

Parameters to : str

new mdf version from (‘3.00’, ‘3.10’, ‘3.20’, ‘3.30’, ‘4.00’, ‘4.10’, ‘4.11’)

compression : bool

enable raw channel data compression for out MDF; default False

Returns out : MDF

new MDF object

filter(channels)
return new MDF object that contains only the channels listed in channels argument

Parameters channels : list

list of channel names to be filtered

Returns mdf : MDF

new MDF file

iter_to_pandas()
generator that yields channel groups as pandas DataFrames

MDF3 and MDF4 classes

MDF3

asammdf tries to emulate the mdf structure using Python builtin data types.

The header attibute is an OrderedDict that holds the file metadata.

The groups attribute is a dictionary list with the following keys:

• data_group : DataGroup object

• channel_group : ChannelGroup object

• channels : list of Channel objects with the same order as found in the mdf file

• channel_conversions : list of ChannelConversion objects in 1-to-1 relation with the channel list

• channel_sources : list of SourceInformation objects in 1-to-1 relation with the channels list

• data_block : DataBlock object

• texts : dictionay containing TextBlock objects used throughout the mdf

– channels : list of dictionaries that contain TextBlock objects ralated to each channel

* long_name_addr : channel long name

* comment_addr : channel comment

* display_name_addr : channel display name

– channel group : list of dictionaries that contain TextBlock objects ralated to each channel group

* comment_addr : channel group comment

– conversion_tab : list of dictionaries that contain TextBlock objects ralated to VATB and VTABR channel
conversions

18 Chapter 8. API

asammdf Documentation, Release 2.2.0

* text_{n} : n-th text of the VTABR conversion

The file_history attribute is a TextBlock object.

The channel_db attibute is a dictionary that holds the (data group index, channel index) pair for all signals. This is
used to speed up the get_signal_by_name method.

The master_db attibute is a dictionary that holds the channel index of the master channel for all data groups. This is
used to speed up the get_signal_by_name method.

API

class asammdf.mdf3.MDF3(name=None, load_measured_data=True, compression=False, ver-
sion=‘3.20’)

If the name exist it will be loaded otherwise an empty file will be created that can be later saved to disk

Parameters name : string

mdf file name

load_measured_data : bool

load data option; default True

• if True the data group binary data block will be loaded in RAM

• if False the channel data is read from disk on request

compression : bool

compression option for data group binary data block; default False

version : string

mdf file version (‘3.00’, ‘3.10’, ‘3.20’ or ‘3.30’); default ‘3.20’

Attributes

name (string) mdf file name
groups (list) list of data groups
header (OrderedDict) mdf file header
file_history (TextBlock) file history text block; can be None
load_measured_data(bool) load measured data option
compression (bool) measured data compression option
version (int) mdf version
channels_db (dict) used for fast channel access by name; for each name key the value is a (group

index, channel index) tuple
masters_db (dict) used for fast master channel access; for each group index key the value is the

master channel index

Methods

add_trigger
append
get

Continued on next page

8.1. MDF 19

asammdf Documentation, Release 2.2.0

Table 8.2 – continued from previous page
info
iter_get_triggers
remove
save

add_trigger(group, time, pre_time=0, post_time=0, comment=’‘)
add trigger to data group

Parameters group : int

group index

time : float

trigger time

pre_time : float

trigger pre time; default 0

post_time : float

trigger post time; default 0

comment : str

trigger comment

append(signals, acquisition_info=’Python’)
Appends a new data group.

Parameters signals : list

list on Signal objects

acquisition_info : str

acquisition information; default ‘Python’

Examples

>>> # case 1 conversion type None
>>> s1 = np.array([1, 2, 3, 4, 5])
>>> s2 = np.array([-1, -2, -3, -4, -5])
>>> s3 = np.array([0.1, 0.04, 0.09, 0.16, 0.25])
>>> t = np.array([0.001, 0.002, 0.003, 0.004, 0.005])
>>> names = ['Positive', 'Negative', 'Float']
>>> units = ['+', '-', '.f']
>>> info = {}
>>> s1 = Signal(samples=s1, timstamps=t, unit='+', name='Positive')
>>> s2 = Signal(samples=s2, timstamps=t, unit='-', name='Negative')
>>> s3 = Signal(samples=s3, timstamps=t, unit='flts', name='Floats')
>>> mdf = MDF3('new.mdf')
>>> mdf.append([s1, s2, s3], 'created by asammdf v1.1.0')
>>> # case 2: VTAB conversions from channels inside another file
>>> mdf1 = MDF3('in.mdf')
>>> ch1 = mdf1.get("Channel1_VTAB")
>>> ch2 = mdf1.get("Channel2_VTABR")
>>> sigs = [ch1, ch2]

20 Chapter 8. API

asammdf Documentation, Release 2.2.0

>>> mdf2 = MDF3('out.mdf')
>>> mdf2.append(sigs, 'created by asammdf v1.1.0')

get(name=None, group=None, index=None, raster=None, samples_only=False)
Gets channel samples. Channel can be specified in two ways:

•using the first positional argument name

–if there are multiple occurances for this channel then the group argument can be used to select a
specific group.

–if there are multiple occurances for this channel and the group argument is None then a warning
is issued

•using the group number (keyword argument group) and the channel number (keyword argument in-
dex). Use info method for group and channel numbers

If the raster keyword argument is not None the output is interpolated accordingly

Parameters name : string

name of channel

group : int

0-based group index

index : int

0-based channel index

raster : float

time raster in seconds

samples_only : bool

if True return only the channel samples as numpy array; if False return a Signal object

Returns vals, t, unit, conversion : (numpy.array, numpy.array, string, dict | None)

The conversion is None exept for the VTAB and VTABR conversions. The conversion
keys are:

• for VTAB conversion:

– raw - numpy.array for X-axis

– phys - numpy.array of strings for Y-axis

– type - conversion type = CONVERSION_TYPE_VTAB

• for VTABR conversion:

– lower - numpy.array for lower range

– upper - numpy.array for upper range

– phys - numpy.array of strings for Y-axis

– type - conversion type = COONVERSION_TYPE_VTABR

The conversion information can be used by the append method for the info argument

Raises MdfError :

* if the channel name is not found

8.1. MDF 21

asammdf Documentation, Release 2.2.0

* if the group index is out of range

* if the channel index is out of range

info()
get MDF information as a dict

Examples

>>> mdf = MDF3('test.mdf')
>>> mdf.info()

iter_get_triggers()
generator that yields triggers

Returns trigger_info : dict

trigger information with the following keys:

• comment : trigger comment

• time : trigger time

• pre_time : trigger pre time

• post_time : trigger post time

• index : trigger index

• group : data group index of trigger

remove(group=None, name=None)
Remove data group. Use group or name keyword arguments to identify the group’s index. group has
priority

Parameters name : string

name of the channel inside the data group to be removed

group : int

data group index to be removed

Examples

>>> mdf = MDF3('test.mdf')
>>> mdf.remove(group=3)
>>> mdf.remove(name='VehicleSpeed')

save(dst=None)
Save MDF to dst. If dst is None the original file is overwritten

MDF version 3 blocks

The following classes implement different MDF version3 blocks.

22 Chapter 8. API

asammdf Documentation, Release 2.2.0

Channel Class

class asammdf.mdf3.Channel(**kargs)
CNBLOCK class derived from dict

The Channel object can be created in two modes:

•using the file_stream and address keyword parameters - when reading from file

•using any of the following presented keys - when creating a new Channel

The keys have the following meaning:

•id - Block type identifier, always “CN”

•block_len - Block size of this block in bytes (entire CNBLOCK)

•next_ch_addr - Pointer to next channel block (CNBLOCK) of this channel group (NIL allowed)

•conversion_addr - Pointer to the conversion formula (CCBLOCK) of this signal (NIL allowed)

•source_depend_addr - Pointer to the source-depending extensions (CEBLOCK) of this signal (NIL al-
lowed)

•ch_depend_addr - Pointer to the dependency block (CDBLOCK) of this signal (NIL allowed)

•comment_addr - Pointer to the channel comment (TXBLOCK) of this signal (NIL allowed)

•channel_type - Channel type

–0 = data channel

–1 = time channel for all signals of this group (in each channel group, exactly one channel must be
defined as time channel) The time stamps recording in a time channel are always relative to the start
time of the measurement defined in HDBLOCK.

•short_name - Short signal name, i.e. the first 31 characters of the ASAM-MCD name of the signal (end
of text should be indicated by 0)

•description - Signal description (end of text should be indicated by 0)

•start_offset - Start offset in bits to determine the first bit of the signal in the data record. The start offset N
is divided into two parts: a “Byte offset” (= N div 8) and a “Bit offset” (= N mod 8). The channel block
can define an “additional Byte offset” (see below) which must be added to the Byte offset.

•bit_count - Number of bits used to encode the value of this signal in a data record

•data_type - Signal data type

•range_flag - Value range valid flag

•min_raw_value - Minimum signal value that occurred for this signal (raw value)

•max_raw_value - Maximum signal value that occurred for this signal (raw value)

•sampling_rate - Sampling rate for a virtual time channel. Unit [s]

•long_name_addr - Pointer to TXBLOCK that contains the ASAM-MCD long signal name

•display_name_addr - Pointer to TXBLOCK that contains the signal’s display name (NIL allowed)

•aditional_byte_offset - Additional Byte offset of the signal in the data record (default value: 0).

Parameters file_stream : file handle

mdf file handle

address : int

8.1. MDF 23

asammdf Documentation, Release 2.2.0

block address inside mdf file

Examples

>>> with open('test.mdf', 'rb') as mdf:
... ch1 = Channel(file_stream=mdf, address=0xBA52)
>>> ch2 = Channel()
>>> ch1.name
'VehicleSpeed'
>>> ch1['id']
b'CN'

Attributes

name (str) full channel name
address (int) block address inside mdf file
dependencies (list) lsit of channel dependencies

Methods

clear
copy Generic (shallow and deep) copying operations.
fromkeys
get
items
keys
pop
popitem
setdefault
update
values

ChannelConversion Class

class asammdf.mdf3.ChannelConversion(**kargs)
CCBLOCK class derived from dict

The ChannelConversion object can be created in two modes:

•using the file_stream and address keyword parameters - when reading from file

•using any of the following presented keys - when creating a new ChannelConversion

The first keys are common for all conversion types, and are followed by conversion specific keys. The keys have
the following meaning:

•common keys

–id - Block type identifier, always “CC”

–block_len - Block size of this block in bytes (entire CCBLOCK)

24 Chapter 8. API

asammdf Documentation, Release 2.2.0

–range_flag - Physical value range valid flag:

–min_phy_value - Minimum physical signal value that occurred for this signal

–max_phy_value - Maximum physical signal value that occurred for this signal

–unit - Physical unit (string should be terminated with 0)

–conversion_type - Conversion type (formula identifier)

–ref_param_nr - Size information about additional conversion data

•specific keys

–linear conversion

*b - offset

*a - factor

*CANapeHiddenExtra - sometimes CANape appends extra information; not compliant with
MDF specs

–ASAM formula conversion

*formula - ecuation as string

–polynomial or rational conversion

*P1 .. P6 - factors

–exponential or logarithmic conversion

*P1 .. P7 - factors

–tabular with or without interpolation (grouped by n)

*raw_{n} - n-th raw integer value (X axis)

*phys_{n} - n-th physical value (Y axis)

–text table conversion

*param_val_{n} - n-th integers value (X axis)

*text_{n} - n-th text value (Y axis)

–text range table conversion

*lower_{n} - n-th lower raw value

*upper_{n} - n-th upper raw value

*text_{n} - n-th text value

Parameters file_stream : file handle

mdf file handle

address : int

block address inside mdf file

Examples

8.1. MDF 25

asammdf Documentation, Release 2.2.0

>>> with open('test.mdf', 'rb') as mdf:
... cc1 = ChannelConversion(file_stream=mdf, address=0xBA52)
>>> cc2 = ChannelConversion(conversion_type=0)
>>> cc1['b'], cc1['a']
0, 100.0

Attributes

address (int) block address inside mdf file

Methods

clear
copy Generic (shallow and deep) copying operations.
fromkeys
get
items
keys
pop
popitem
setdefault
update
values

ChannelDependency Class

class asammdf.mdf3.ChannelDependency(**kargs)
CDBLOCK class derived from dict

Currently the ChannelDependency object can only be created using the file_stream and address keyword pa-
rameters when reading from file

The keys have the following meaning:

•id - Block type identifier, always “CD”

•block_len - Block size of this block in bytes (entire CDBLOCK)

•data - Dependency type

•sd_nr - Total number of signals dependencies (m)

•for each dependency there is a group of three keys:

–dg_{n} - Pointer to the data group block (DGBLOCK) of signal dependency n

–cg_{n} - Pointer to the channel group block (DGBLOCK) of signal dependency n

–ch_{n} - Pointer to the channel block (DGBLOCK) of signal dependency n

•there can also be optional keys which decribe dimensions for the N-dimensional dependencies:

–dim_{n} - Optional: size of dimension n for N-dimensional dependency

Parameters file_stream : file handle

26 Chapter 8. API

asammdf Documentation, Release 2.2.0

mdf file handle

address : int

block address inside mdf file

Attributes

address (int) block address inside mdf file

Methods

clear
copy Generic (shallow and deep) copying operations.
fromkeys
get
items
keys
pop
popitem
setdefault
update
values

ChannelExtension Class

class asammdf.mdf3.ChannelExtension(**kargs)
CEBLOCK class derived from dict

The ChannelExtension object can be created in two modes:

•using the file_stream and address keyword parameters - when reading from file

•using any of the following presented keys - when creating a new ChannelExtension

The first keys are common for all conversion types, and are followed by conversion specific keys. The keys have
the following meaning:

•common keys

–id - Block type identifier, always “CE”

–block_len - Block size of this block in bytes (entire CEBLOCK)

–type - Extension type identifier

•specific keys

–for DIM block

*module_nr - Number of module

*module_address - Address

*description - Description

*ECU_identification - Identification of ECU

8.1. MDF 27

asammdf Documentation, Release 2.2.0

*reserved0’ - reserved

–for Vector CAN block

*CAN_id - Identifier of CAN message

*CAN_ch_index - Index of CAN channel

*message_name - Name of message (string should be terminated by 0)

*sender_name - Name of sender (string should be terminated by 0)

*reserved0 - reserved

Parameters file_stream : file handle

mdf file handle

address : int

block address inside mdf file

Attributes

address (int) block address inside mdf file

Methods

clear
copy Generic (shallow and deep) copying operations.
fromkeys
get
items
keys
pop
popitem
setdefault
update
values

ChannelGroup Class

class asammdf.mdf3.ChannelGroup(**kargs)
CGBLOCK class derived from dict

The ChannelGroup object can be created in two modes:

•using the file_stream and address keyword parameters - when reading from file

•using any of the following presented keys - when creating a new ChannelGroup

The keys have the following meaning:

•id - Block type identifier, always “CG”

•block_len - Block size of this block in bytes (entire CGBLOCK)

•next_cg_addr - Pointer to next channel group block (CGBLOCK) (NIL allowed)

28 Chapter 8. API

asammdf Documentation, Release 2.2.0

•first_ch_addr - Pointer to first channel block (CNBLOCK) (NIL allowed)

•comment_addr - Pointer to channel group comment text (TXBLOCK) (NIL allowed)

•record_id - Record ID, i.e. value of the identifier for a record if the DGBLOCK defines a number of
record IDs > 0

•ch_nr - Number of channels (redundant information)

•samples_byte_nr - Size of data record in Bytes (without record ID), i.e. size of plain data for a each
recorded sample of this channel group

•cycles_nr - Number of records of this type in the data block i.e. number of samples for this channel group

•sample_reduction_addr - only since version 3.3. Pointer to first sample reduction block (SRBLOCK)
(NIL allowed) Default value: NIL.

Parameters file_stream : file handle

mdf file handle

address : int

block address inside mdf file

Examples

>>> with open('test.mdf', 'rb') as mdf:
... cg1 = ChannelGroup(file_stream=mdf, address=0xBA52)
>>> cg2 = ChannelGroup(sample_bytes_nr=32)
>>> hex(cg1.address)
0xBA52
>>> cg1['id']
b'CG'

Attributes

address (int) block address inside mdf file

Methods

clear
copy Generic (shallow and deep) copying operations.
fromkeys
get
items
keys
pop
popitem
setdefault
update
values

8.1. MDF 29

asammdf Documentation, Release 2.2.0

DataGroup Class

class asammdf.mdf3.DataGroup(**kargs)
DGBLOCK class derived from dict

The DataGroup object can be created in two modes:

•using the file_stream and address keyword parameters - when reading from file

•using any of the following presented keys - when creating a new DataGroup

The keys have the following meaning:

•id - Block type identifier, always “DG”

•block_len - Block size of this block in bytes (entire DGBLOCK)

•next_dg_addr - Pointer to next data group block (DGBLOCK) (NIL allowed)

•first_cg_addr - Pointer to first channel group block (CGBLOCK) (NIL allowed)

•trigger_addr - Pointer to trigger block (TRBLOCK) (NIL allowed)

•data_block_addr - Pointer to the data block (see separate chapter on data storage)

•cg_nr - Number of channel groups (redundant information)

•record_id_nr - Number of record IDs in the data block

•reserved0 - since version 3.2; Reserved

Parameters file_stream : file handle

mdf file handle

address : int

block address inside mdf file

Attributes

address (int) block address inside mdf file

Methods

clear
copy Generic (shallow and deep) copying operations.
fromkeys
get
items
keys
pop
popitem
setdefault
update
values

30 Chapter 8. API

asammdf Documentation, Release 2.2.0

FileIdentificationBlock Class

class asammdf.mdf3.FileIdentificationBlock(**kargs)
IDBLOCK class derived from dict

The TriggerBlock object can be created in two modes:

•using the file_stream and address keyword parameters - when reading from file

•using the classmethod from_text

The keys have the following meaning:

•file_identification - file identifier

•version_str - format identifier

•program_identification - program identifier

•byte_order - default byte order

•float_format - default floating-point format

•mdf_version - version number of MDF format

•code_page - code page number

•reserved0 - reserved

•reserved1 - reserved

•unfinalized_standard_flags - Standard Flags for unfinalized MDF

•unfinalized_custom_flags - Custom Flags for unfinalized MDF

Parameters file_stream : file handle

mdf file handle

version : int

mdf version in case of new file

Attributes

address (int) block address inside mdf file; should be 0 always

Methods

clear
copy Generic (shallow and deep) copying operations.
fromkeys
get
items
keys
pop
popitem
setdefault

Continued on next page

8.1. MDF 31

asammdf Documentation, Release 2.2.0

Table 8.9 – continued from previous page
update
values

HeaderBlock Class

class asammdf.mdf3.HeaderBlock(**kargs)
HDBLOCK class derived from dict

The TriggerBlock object can be created in two modes:

•using the file_stream - when reading from file

•using the classmethod from_text

The keys have the following meaning:

•id - Block type identifier, always “HD”

•block_len - Block size of this block in bytes (entire HDBLOCK)

•first_dg_addr - Pointer to the first data group block (DGBLOCK)

•comment_addr - Pointer to the measurement file comment text (TXBLOCK) (NIL allowed)

•program_addr - Pointer to program block (PRBLOCK) (NIL allowed)

•dg_nr - Number of data groups (redundant information)

•date - Date at which the recording was started in “DD:MM:YYYY” format

•time - Time at which the recording was started in “HH:MM:SS” format

•author - author name

•organization - organization

•project - project name

•subject - subject

Since version 3.2 the following extra keys were added:

•abs_time - Time stamp at which recording was started in nanoseconds.

•tz_offset - UTC time offset in hours (= GMT time zone)

•time_quality - Time quality class

•timer_identification - Timer identification (time source),

Parameters file_stream : file handle

mdf file handle

Attributes

address (int) block address inside mdf file; should be 64 always

Methods

32 Chapter 8. API

asammdf Documentation, Release 2.2.0

clear
copy Generic (shallow and deep) copying operations.
fromkeys
get
items
keys
pop
popitem
setdefault
update
values

ProgramBlock Class

class asammdf.mdf3.ProgramBlock(**kargs)
PRBLOCK class derived from dict

The ProgramBlock object can be created in two modes:

•using the file_stream and address keyword parameters - when reading from file

•using any of the following presented keys - when creating a new ProgramBlock

The keys have the following meaning:

•id - Block type identifier, always “PR”

•block_len - Block size of this block in bytes (entire PRBLOCK)

•data - Program-specific data

Parameters file_stream : file handle

mdf file handle

address : int

block address inside mdf file

Attributes

address (int) block address inside mdf file

Methods

clear
copy Generic (shallow and deep) copying operations.
fromkeys
get
items
keys
pop

Continued on next page

8.1. MDF 33

asammdf Documentation, Release 2.2.0

Table 8.11 – continued from previous page
popitem
setdefault
update
values

SampleReduction Class

class asammdf.mdf3.SampleReduction(**kargs)
SRBLOCK class derived from dict

Currently the SampleReduction object can only be created by using the file_stream and address keyword pa-
rameters - when reading from file

The keys have the following meaning:

•id - Block type identifier, always “SR”

•block_len - Block size of this block in bytes (entire SRBLOCK)

•next_sr_addr - Pointer to next sample reduction block (SRBLOCK) (NIL allowed)

•data_block_addr - Pointer to the data block for this sample reduction

•cycles_nr - Number of reduced samples in the data block.

•time_interval - Length of time interval [s] used to calculate the reduced samples.

Parameters file_stream : file handle

mdf file handle

address : int

block address inside mdf file

Attributes

address (int) block address inside mdf file

Methods

clear
copy Generic (shallow and deep) copying operations.
fromkeys
get
items
keys
pop
popitem
setdefault
update
values

34 Chapter 8. API

asammdf Documentation, Release 2.2.0

TextBlock Class

class asammdf.mdf3.TextBlock(**kargs)
TXBLOCK class derived from dict

The ProgramBlock object can be created in two modes:

•using the file_stream and address keyword parameters - when reading from file

•using the classmethod from_text

The keys have the following meaning:

•id - Block type identifier, always “TX”

•block_len - Block size of this block in bytes (entire TXBLOCK)

•text - Text (new line indicated by CR and LF; end of text indicated by 0)

Parameters file_stream : file handle

mdf file handle

address : int

block address inside mdf file

text : bytes

bytes for creating a new TextBlock

Examples

>>> tx1 = TextBlock.from_text('VehicleSpeed')
>>> tx1.text_str
'VehicleSpeed'
>>> tx1['text']
b'VehicleSpeed'

Attributes

address (int) block address inside mdf file
text_str (str) text data as unicode string

Methods

clear
copy Generic (shallow and deep) copying operations.
from_text
fromkeys
get
items
keys
pop

Continued on next page

8.1. MDF 35

asammdf Documentation, Release 2.2.0

Table 8.13 – continued from previous page
popitem
setdefault
update
values

TriggerBlock Class

class asammdf.mdf3.TriggerBlock(**kargs)
TRBLOCK class derived from dict

The TriggerBlock object can be created in two modes:

•using the file_stream and address keyword parameters - when reading from file

•using the classmethod from_text

The keys have the following meaning:

•id - Block type identifier, always “TX”

•block_len - Block size of this block in bytes (entire TRBLOCK)

•text_addr - Pointer to trigger comment text (TXBLOCK) (NIL allowed)

•trigger_events_nr - Number of trigger events n (0 allowed)

•trigger_{n}_time - Trigger time [s] of trigger event n

•trigger_{n}_pretime - Pre trigger time [s] of trigger event n

•trigger_{n}_posttime - Post trigger time [s] of trigger event n

Parameters file_stream : file handle

mdf file handle

address : int

block address inside mdf file

Attributes

address (int) block address inside mdf file

Methods

clear
copy Generic (shallow and deep) copying operations.
fromkeys
get
items
keys
pop
popitem

Continued on next page

36 Chapter 8. API

asammdf Documentation, Release 2.2.0

Table 8.14 – continued from previous page
setdefault
update
values

MDF4

asammdf tries to emulate the mdf structure using Python builtin data types.

The header attibute is an OrderedDict that holds the file metadata.

The groups attribute is a dictionary list with the following keys:

• data_group : DataGroup object

• channel_group : ChannelGroup object

• channels : list of Channel objects with the same order as found in the mdf file

• channel_conversions : list of ChannelConversion objects in 1-to-1 relation with the channel list

• channel_sources : list of SourceInformation objects in 1-to-1 relation with the channels list

• data_block : DataBlock object

• texts : dictionay containing TextBlock objects used throughout the mdf

– channels : list of dictionaries that contain TextBlock objects ralated to each channel

* name_addr : channel name

* comment_addr : channel comment

– channel group : list of dictionaries that contain TextBlock objects ralated to each channel group

* acq_name_addr : channel group acquisition comment

* comment_addr : channel group comment

– conversion_tab : list of dictionaries that contain TextBlock objects related to TABX and RTABX channel
conversions

* text_{n} : n-th text of the VTABR conversion

* default_addr : default text

– conversions : list of dictionaries that containt TextBlock obejcts related to channel conversions

* name_addr : converions name

* unit_addr : channel unit_addr

* comment_addr : converison comment

* formula_addr : formula text; only valid for algebraic conversions

– sources : list of dictionaries that containt TextBlock obejcts related to channel sources

* name_addr : source name

* path_addr : source path_addr

* comment_addr : source comment

8.1. MDF 37

asammdf Documentation, Release 2.2.0

The file_history attribute is a list of (FileHistory, TextBlock) pairs .

The channel_db attibute is a dictionary that holds the (data group index, channel index) pair for all signals. This is
used to speed up the get_signal_by_name method.

The master_db attibute is a dictionary that holds the channel index of the master channel for all data groups. This is
used to speed up the get_signal_by_name method.

API

class asammdf.mdf4.MDF4(name=None, load_measured_data=True, compression=False, ver-
sion=‘4.00’)

If the name exist it will be loaded otherwise an empty file will be created that can be later saved to disk

Parameters name : string

mdf file name

load_measured_data : bool

load data option; default True

• if True the data group binary data block will be loaded in RAM

• if False the channel data is read from disk on request

compression : bool

compression option for data group binary data block; default False

version : string

mdf file version (‘4.00’, ‘4.10’, ‘4.11’); default ‘4.00’

Attributes

name (string) mdf file name
groups (list) list of data groups
header (HeaderBlock) mdf file header
file_history (list) list of (FileHistory, TextBlock) pairs
comment (TextBlock) mdf file comment
identification (FileIdentificationBlock) mdf file start block
load_measured_data(bool) load measured data option
compression (bool) measured data compression option
version (int) mdf version
channels_db (dict) used for fast channel access by name; for each name key the value is a (group

index, channel index) tuple
masters_db (dict) used for fast master channel access; for each group index key the value is the

master channel index

Methods

append
attach
extract_attachment

Continued on next page

38 Chapter 8. API

asammdf Documentation, Release 2.2.0

Table 8.15 – continued from previous page
get
info
remove
save

append(signals, source_info=’Python’)
Appends a new data group.

Parameters signals : list

list on Signal objects

acquisition_info : str

acquisition information; default ‘Python’

Examples

>>> # case 1 conversion type None
>>> s1 = np.array([1, 2, 3, 4, 5])
>>> s2 = np.array([-1, -2, -3, -4, -5])
>>> s3 = np.array([0.1, 0.04, 0.09, 0.16, 0.25])
>>> t = np.array([0.001, 0.002, 0.003, 0.004, 0.005])
>>> names = ['Positive', 'Negative', 'Float']
>>> units = ['+', '-', '.f']
>>> info = {}
>>> s1 = Signal(samples=s1, timstamps=t, unit='+', name='Positive')
>>> s2 = Signal(samples=s2, timstamps=t, unit='-', name='Negative')
>>> s3 = Signal(samples=s3, timstamps=t, unit='flts', name='Floats')
>>> mdf = MDF4('new.mf4')
>>> mdf.append([s1, s2, s3], 'created by asammdf v1.1.0')
>>> # case 2: VTAB conversions from channels inside another file
>>> mdf1 = MDF4('in.mf4')
>>> ch1 = mdf1.get("Channel1_VTAB")
>>> ch2 = mdf1.get("Channel2_VTABR")
>>> sigs = [ch1, ch2]
>>> mdf2 = MDF4('out.mf4')
>>> mdf2.append(sigs, 'created by asammdf v1.1.0')

attach(data, file_name=None, comment=None, compression=True, mime=’application/octet-
stream’)

attach embedded attachment as application/octet-stream

Parameters data : bytes

data to be attached

file_name : str

string file name

comment : str

attachment comment

compression : bool

use compression for embedded attachment data

8.1. MDF 39

asammdf Documentation, Release 2.2.0

mime : str

mime type string

extract_attachment(index)
extract attachemnt index data. If it is an embedded attachment, then this method creates the new file
according to the attachemnt file name information

Parameters index : int

attachment index

Returns data : bytes | str

attachment data

get(name=None, group=None, index=None, raster=None, samples_only=False)
Gets channel samples. Channel can be specified in two ways:

•using the first positional argument name

–if there are multiple occurances for this channel then the group argument can be used to select
a specific group.

–if there are multiple occurances for this channel and the group argument is None then a warning
is issued

•using the group number (keyword argument group) and the channel number (keyword argument
index). Use info method for group and channel numbers

If the raster keyword argument is not None the output is interpolated accordingly

Parameters name : string

name of channel

group : int

0-based group index

index : int

0-based channel index

raster : float

time raster in seconds

samples_only : bool

if True return only the channel samples as numpy array; if False return a Signal
object

Returns vals, t, unit, conversion : (numpy.array, numpy.array, string, dict | None)

The conversion is None exept for the VTAB and VTABR conversions. The con-
version keys are:

• for TABX conversion:

– raw - numpy.array for X-axis

– phys - numpy.array of strings for Y-axis

– type - conversion type = CONVERSION_TYPE_TABX

– default - default bytes value

• for RTABX conversion:

40 Chapter 8. API

asammdf Documentation, Release 2.2.0

– lower - numpy.array for lower range

– upper - numpy.array for upper range

– phys - numpy.array of strings for Y-axis

– type - conversion type =

– default - default bytes value

The conversion information can be used by the append method for the info argu-
ment

Raises MdfError :

* if the channel name is not found

* if the group index is out of range

* if the channel index is out of range

info()
get MDF information as a dict

Examples

>>> mdf = MDF4('test.mdf')
>>> mdf.info()

remove(group=None, name=None)
Remove data group. Use group or name keyword arguments to identify the group’s index. group has
priority

Parameters name : string

name of the channel inside the data group to be removed

group : int

data group index to be removed

Examples

>>> mdf = MDF4('test.mdf')
>>> mdf.remove(group=3)
>>> mdf.remove(name='VehicleSpeed')

save(dst=None)
Save MDF to dst. If dst is None the original file is overwritten

MDF version 4 blocks

The following classes implement different MDF version3 blocks.

8.1. MDF 41

asammdf Documentation, Release 2.2.0

AttachmentBlock Class

class asammdf.mdf4.AttachmentBlock(**kargs)
ATBLOCK class

When adding new attachments only embedded attachemnts are allowed, with keyword argument data of type
bytes

Methods

clear
copy Generic (shallow and deep) copying operations.
extract
fromkeys
get
items
keys
pop
popitem
setdefault
update
values

Channel Class

class asammdf.mdf4.Channel(**kargs)
CNBLOCK class

Methods

clear
copy Generic (shallow and deep) copying operations.
fromkeys
get
items
keys
pop
popitem
setdefault
update
values

ChannelConversion Class

class asammdf.mdf4.ChannelConversion(**kargs)
CCBLOCK class

42 Chapter 8. API

asammdf Documentation, Release 2.2.0

Methods

clear
copy Generic (shallow and deep) copying operations.
fromkeys
get
items
keys
pop
popitem
setdefault
update
values

ChannelGroup Class

class asammdf.mdf4.ChannelGroup(**kargs)
CGBLOCK class

Methods

clear
copy Generic (shallow and deep) copying operations.
fromkeys
get
items
keys
pop
popitem
setdefault
update
values

DataGroup Class

class asammdf.mdf4.DataGroup(**kargs)
DGBLOCK class

Methods

clear
copy Generic (shallow and deep) copying operations.
fromkeys
get
items
keys

Continued on next page

8.1. MDF 43

asammdf Documentation, Release 2.2.0

Table 8.20 – continued from previous page
pop
popitem
setdefault
update
values

DataList Class

class asammdf.mdf4.DataList(**kargs)
DLBLOCK class

Methods

clear
copy Generic (shallow and deep) copying operations.
fromkeys
get
items
keys
pop
popitem
setdefault
update
values

DataBlock Class

class asammdf.mdf4.DataBlock(**kargs)
DTBLOCK class Raw channel dta can be compressed to save RAM; set the compression keyword argument to
True when instantiating the object

Parameters compression : bool

enable raw channel data compression in RAM

address : int

DTBLOCK address inside the file

file_stream : int

file handle

Methods

clear
copy Generic (shallow and deep) copying operations.
fromkeys
get

Continued on next page

44 Chapter 8. API

asammdf Documentation, Release 2.2.0

Table 8.22 – continued from previous page
items
keys
pop
popitem
setdefault
update
values

FileIdentificationBlock Class

class asammdf.mdf4.FileIdentificationBlock(**kargs)
IDBLOCK class

Methods

clear
copy Generic (shallow and deep) copying operations.
fromkeys
get
items
keys
pop
popitem
setdefault
update
values

HeaderBlock Class

class asammdf.mdf4.HeaderBlock(**kargs)
HDBLOCK class

Methods

clear
copy Generic (shallow and deep) copying operations.
fromkeys
get
items
keys
pop
popitem
setdefault
update
values

8.1. MDF 45

asammdf Documentation, Release 2.2.0

SourceInformation Class

class asammdf.mdf4.SourceInformation(**kargs)
SIBLOCK class

Methods

clear
copy Generic (shallow and deep) copying operations.
fromkeys
get
items
keys
pop
popitem
setdefault
update
values

FileHistory Class

class asammdf.mdf4.FileHistory(**kargs)
FHBLOCK class

Methods

clear
copy Generic (shallow and deep) copying operations.
fromkeys
get
items
keys
pop
popitem
setdefault
update
values

TextBlock Class

class asammdf.mdf4.TextBlock(**kargs)
common TXBLOCK and MDBLOCK class

Methods

46 Chapter 8. API

asammdf Documentation, Release 2.2.0

clear
copy Generic (shallow and deep) copying operations.
from_text
fromkeys
get
items
keys
pop
popitem
setdefault
update
values

classmethod from_text(text, meta=False)
Create a TextBlock from a str or bytes

Parameters text : str | bytes

input text

meta : bool

enable meta text block

Examples

>>> t = TextBlock.from_text(b'speed')
>>> t['id']
b'##TX'
>>> t.text_str
speed
>>> t = TextBlock.from_text('mass', meta=True)
>>> t['id']
b'##MD'

Notes about compression and load_measured_data arguments

By default MDF object use no compression and the raw channel data is loaded into RAM. This will give you the best
performance from asammdf.

However if you reach the physical memmory limit asammdf gives you two options

1. use the compression flag: raw channel data is loaded into RAM but it is compressed. The default compression
library is blosc and as a fallback zlib is used (slower). The advange is that you save RAM, but in return you
will pay the compression/decompression time penalty in all operations (file open, getting channel data, saving
to disk, converting).

2. use the load_measured_data flag: raw channel data is not read.

MDF defaults

Advantages

8.1. MDF 47

asammdf Documentation, Release 2.2.0

• best performance

Disadvantages

• highest RAM usage

Use case

• when data fits inside the system RAM

MDF with compression

Advantages

• lower RAM usage than default

• alows saving to disk and appending new data

Disadvantages

• slowest

Use case

• when default data exceeds RAM and you need to append and save

MDF with load_measured_data

Advantages

• lowest RAM usage

• faster than compression

Disadvantages

• ReadOnly mode: appending and saving is not possible

Use case

• when default data exceeds RAM and you only want to extract information from the file

Note: See benchmarks for the effects of using the flags.

Signal

class asammdf.signal.Signal(samples=None, timestamps=None, unit=’‘, name=’‘, conversion=None,
comment=’‘)

The Signal represents a signal described by it’s samples and timestamps. It can do aritmethic operations agains
other Signal or numeric type. The operations are computed in respect to the timestamps (time correct). The
integer signals are not interpolated, instead the last value relative to the current timestamp is used. samples,
timstamps and name are mandatory arguments.

Parameters samples : numpy.array

signal samples

timestamps : numpy.array

signal timestamps

48 Chapter 8. API

asammdf Documentation, Release 2.2.0

unit : str

signal unit

name : str

signal name

conversion : dict

dict describing the channel conversion , default None

comment : str

signal comment, default ‘’

Methods

astype
cut
interp
plot

astype(np_type)
returns new Signal with samples of dtype np_type

cut(start, stop)
Cuts the signal according to the start and stop values, by using the insertion indexes in the signal’s time
axis.

Parameters start : float

start timestamp for cutting

stop : float

stop timestamp for cutting

Returns outsig : Signal

new Signal cut from the original

Examples

>>> new_sig = old_sig.cut(1.0, 10.5)
>>> new_sig.timestamps[0], new_sig.timestamps[-1]
0.98, 10.48

interp(new_timestamps)
returns a new Signal interpolated using the new_timestamps

plot()
plot Signal samples

8.2. Signal 49

asammdf Documentation, Release 2.2.0

Examples

Working with MDF

from asammdf import MDF, Signal
import numpy as np

create 3 Signal objects

timestamps = np.array([0.1, 0.2, 0.3, 0.4, 0.5], dtype=np.float32)

unit8
s_uint8 = Signal(samples=np.array([0, 1, 2, 3, 4], dtype=np.uint8),

timestamps=timestamps,
name='Uint8_Signal',
unit='u1')

int32
s_int32 = Signal(samples=np.array([-20, -10, 0, 10, 20], dtype=np.int32),

timestamps=timestamps,
name='Int32_Signal',
unit='i4')

float64
s_float64 = Signal(samples=np.array([-20, -10, 0, 10, 20], dtype=np.int32),

timestamps=timestamps,
name='Float64_Signal',
unit='f8')

create empty MDf version 4.00 file
mdf4 = MDF(version='4.00')

append the 3 signals to the new file
signals = [s_uint8, s_int32, s_float64]
mdf4.append(signals, 'Created by Python')

save new file
mdf4.save('my_new_file.mf4')

convert new file to mdf version 3.10 with compression of raw channel data
mdf3 = mdf4.convert(to='3.10', compression=True)
print(mdf3.version)
prints >>> 3.10

get the float signal
sig = mdf3.get('Float64_Signal')
print(sig)
prints >>> Signal { name="Float64_Signal": s=[-20 -10 0 10 20] t=[0.1
→˓ 0.2 0.30000001 0.40000001 0.5] unit="f8"
→˓conversion=None }

Working with Signal

from asammdf import Signal
import numpy as np

50 Chapter 8. API

asammdf Documentation, Release 2.2.0

create 3 Signal objects with different time stamps

unit8 with 100ms time raster
timestamps = np.array([0.1 * t for t in range(5)], dtype=np.float32)
s_uint8 = Signal(samples=np.array([t for t in range(5)], dtype=np.uint8),

timestamps=timestamps,
name='Uint8_Signal',
unit='u1')

int32 with 50ms time raster
timestamps = np.array([0.05 * t for t in range(10)], dtype=np.float32)
s_int32 = Signal(samples=np.array(list(range(-500, 500, 100)), dtype=np.int32),

timestamps=timestamps,
name='Int32_Signal',
unit='i4')

float64 with 300ms time raster
timestamps = np.array([0.3 * t for t in range(3)], dtype=np.float32)
s_float64 = Signal(samples=np.array(list(range(2000, -1000, -1000)), dtype=np.int32),

timestamps=timestamps,
name='Float64_Signal',
unit='f8')

prod = s_float64 * s_uint8
prod.name = 'Uint8_Signal * Float64_Signal'
prod.unit = '*'
prod.plot()

pow2 = s_uint8 ** 2
pow2.name = 'Uint8_Signal ^ 2'
pow2.unit = 'u1^2'
pow2.plot()

allsum = s_uint8 + s_int32 + s_float64
allsum.name = 'Uint8_Signal + Int32_Signal + Float64_Signal'
allsum.unit = '+'
allsum.plot()

inplace operations
pow2 *= -1
pow2.name = '- Uint8_Signal ^ 2'
pow2.plot()

8.3. Examples 51

asammdf Documentation, Release 2.2.0

52 Chapter 8. API

CHAPTER 9

Benchmarks

asammdf relies heavily on dict objects. Starting with Python 3.6 the dict objects are more compact and ordered
(implementation detail); asammdf uses takes advantage of those changes so for best performance it is advised to use
Python >= 3.6.

Intro

The benchmarks were done using two test files (for mdf version 3 and 4) of around 170MB. The files contain 183 data
groups and a total of 36424 channels.

asamdf 2.1.0 was compared against mdfreader 0.2.5. mdfreader seems to be the most used Python package to handle
MDF files, and it also supports both version 3 and 4 of the standard.

The three benchmark cathegories are file open, file save and extracting the data for all channels inside the file(36424
calls). For each cathegory two aspect were noted: elapsed time and peak RAM usage.

Dependencies

You will need the following packages to be able to run the benchmark script

• psutil

• mdfreader

x64 Python results

The test environment used for 64 bit tests had:

• 3.6.2 (v3.6.2:5fd33b5, Jul 8 2017, 04:57:36) [MSC v.1900 64 bit (AMD64)]

• Windows-10-10.0.14393-SP0

53

asammdf Documentation, Release 2.2.0

• Intel64 Family 6 Model 94 Stepping 3, GenuineIntel

• 16GB installed RAM

Notations used in the results

• nodata = MDF object created with load_measured_data=False (raw channel data not loaded into RAM)

• compression = MDF object created with compression=True/blosc

• compression bcolz 6 = MDF object created with compression=6

• noDataLoading = MDF object read with noDataLoading=True

Files used for benchmark: * 183 groups * 36424 channels

Open file Time [ms] RAM [MB]
asammdf 2.2.0 mdfv3 1088 379
asammdf 2.2.0 compression mdfv3 1287 298
asammdf 2.2.0 nodata mdfv3 896 198
mdfreader 0.2.5 mdfv3 3533 537
asammdf 2.2.0 mdfv4 2027 464
asammdf 2.2.0 compression mdfv4 2504 367
asammdf 2.2.0 nodata mdfv4 1668 268
mdfreader 0.2.5 mdfv4 34908 748

Save file Time [ms] RAM [MB]
asammdf 2.2.0 mdfv3 398 379
asammdf 2.2.0 compression mdfv3 523 302
mdfreader 0.2.5 mdfv3 23881 1997
asammdf 2.2.0 mdfv4 554 471
asammdf 2.2.0 compression mdfv4 615 373
mdfreader 0.2.5 mdfv4 21288 2795

Get all channels (36424 calls) Time [ms] RAM [MB]
asammdf 2.2.0 mdfv3 577 383
asammdf 2.2.0 compression mdfv3 13504 306
asammdf 2.2.0 nodata mdfv3 9506 210
mdfreader 0.2.5 mdfv3 30 536
asammdf 2.2.0 mdfv4 498 469
asammdf 2.2.0 compression mdfv4 15310 377
asammdf 2.2.0 nodata mdfv4 12565 280
mdfreader 0.2.5 mdfv4 40 748

54 Chapter 9. Benchmarks

asammdf Documentation, Release 2.2.0

Graphical results

0 5000 10000 15000 20000 25000 30000 35000
Time [ms]

asammdf 2.2.0 mdfv3

asammdf 2.2.0 compression mdfv3

asammdf 2.2.0 nodata mdfv3

mdfreader 0.2.5 mdfv3

asammdf 2.2.0 mdfv4

asammdf 2.2.0 compression mdfv4

asammdf 2.2.0 nodata mdfv4

mdfreader 0.2.5 mdfv4

Open test file - time

0 100 200 300 400 500 600 700
RAM [MB]

asammdf 2.2.0 mdfv3

asammdf 2.2.0 compression mdfv3

asammdf 2.2.0 nodata mdfv3

mdfreader 0.2.5 mdfv3

asammdf 2.2.0 mdfv4

asammdf 2.2.0 compression mdfv4

asammdf 2.2.0 nodata mdfv4

mdfreader 0.2.5 mdfv4

Open test file - ram usage

9.3. x64 Python results 55

asammdf Documentation, Release 2.2.0

0 5000 10000 15000 20000 25000
Time [ms]

asammdf 2.2.0 mdfv3

asammdf 2.2.0 compression mdfv3

mdfreader 0.2.5 mdfv3

asammdf 2.2.0 mdfv4

asammdf 2.2.0 compression mdfv4

mdfreader 0.2.5 mdfv4

Save test file - time

0 500 1000 1500 2000 2500
RAM [MB]

asammdf 2.2.0 mdfv3

asammdf 2.2.0 compression mdfv3

mdfreader 0.2.5 mdfv3

asammdf 2.2.0 mdfv4

asammdf 2.2.0 compression mdfv4

mdfreader 0.2.5 mdfv4

Save test file - ram usage

56 Chapter 9. Benchmarks

asammdf Documentation, Release 2.2.0

0 2000 4000 6000 8000 10000 12000 14000 16000
Time [ms]

asammdf 2.2.0 mdfv3

asammdf 2.2.0 compression mdfv3

asammdf 2.2.0 nodata mdfv3

mdfreader 0.2.5 mdfv3

asammdf 2.2.0 mdfv4

asammdf 2.2.0 compression mdfv4

asammdf 2.2.0 nodata mdfv4

mdfreader 0.2.5 mdfv4

Get all channels (36424 calls) - time

0 100 200 300 400 500 600 700
RAM [MB]

asammdf 2.2.0 mdfv3

asammdf 2.2.0 compression mdfv3

asammdf 2.2.0 nodata mdfv3

mdfreader 0.2.5 mdfv3

asammdf 2.2.0 mdfv4

asammdf 2.2.0 compression mdfv4

asammdf 2.2.0 nodata mdfv4

mdfreader 0.2.5 mdfv4

Get all channels (36424 calls) - ram usage

x86 Python results

The test environment used for 32 bit tests had:

• Python 3.6.1 (v3.6.1:69c0db5, Mar 21 2017, 17:54:52) [MSC v.1900 32 bit (Intel)]

• Windows-7-6.1.7601-SP1

• Intel64 Family 6 Model 94 Stepping 3, GenuineIntel (i7-6820Q)

• 16GB installed RAM

The notations used in the results have the following meaning:

9.4. x86 Python results 57

asammdf Documentation, Release 2.2.0

• nodata = MDF object created with load_measured_data=False (raw channel data no loaded into RAM)

• compression = MDF object created with compression=True (raw channel data loaded into RAM and com-
pressed)

• noconvert = MDF object created with convertAfterRead=False

Raw data

• 3.6.1 (v3.6.1:69c0db5, Mar 21 2017, 17:54:52) [MSC v.1900 32 bit (Intel)]

• Windows-10-10.0.14393-SP0

• Intel64 Family 6 Model 94 Stepping 3, GenuineIntel

• 16GB installed RAM

Notations used in the results

• nodata = MDF object created with load_measured_data=False (raw channel data not loaded into RAM)

• compression = MDF object created with compression=True/blosc

• compression bcolz 6 = MDF object created with compression=6

• noDataLoading = MDF object read with noDataLoading=True

Files used for benchmark: * 183 groups * 36424 channels

Open file Time [ms] RAM [MB]
asammdf 2.2.0 mdfv3 1149 294
asammdf 2.2.0 compression mdfv3 1368 202
asammdf 2.2.0 nodata mdfv3 861 123
mdfreader 0.2.5 mdfv3 3755 455
asammdf 2.2.0 mdfv4 2316 348
asammdf 2.2.0 compression mdfv4 2694 247
asammdf 2.2.0 nodata mdfv4 1886 166
mdfreader 0.2.5 mdfv4 43210 578

Save file Time [ms] RAM [MB]
asammdf 2.2.0 mdfv3 413 297
asammdf 2.2.0 compression mdfv3 592 204
mdfreader 0.2.5 mdfv3 20038 1224
asammdf 2.2.0 mdfv4 720 357
asammdf 2.2.0 compression mdfv4 674 253
mdfreader 0.2.5 mdfv4 17553 1687

Get all channels (36424 calls) Time [ms] RAM [MB]
asammdf 2.2.0 mdfv3 784 299
asammdf 2.2.0 compression mdfv3 25345 207
asammdf 2.2.0 nodata mdfv3 18657 133
mdfreader 0.2.5 mdfv3 35 455
asammdf 2.2.0 mdfv4 695 354
asammdf 2.2.0 compression mdfv4 24325 255
asammdf 2.2.0 nodata mdfv4 20745 176
mdfreader 0.2.5 mdfv4 50 578

58 Chapter 9. Benchmarks

asammdf Documentation, Release 2.2.0

Graphical results

0 10000 20000 30000 40000
Time [ms]

asammdf 2.2.0 mdfv3

asammdf 2.2.0 compression mdfv3

asammdf 2.2.0 nodata mdfv3

mdfreader 0.2.5 mdfv3

asammdf 2.2.0 mdfv4

asammdf 2.2.0 compression mdfv4

asammdf 2.2.0 nodata mdfv4

mdfreader 0.2.5 mdfv4

Open test file - time

0 100 200 300 400 500 600
RAM [MB]

asammdf 2.2.0 mdfv3

asammdf 2.2.0 compression mdfv3

asammdf 2.2.0 nodata mdfv3

mdfreader 0.2.5 mdfv3

asammdf 2.2.0 mdfv4

asammdf 2.2.0 compression mdfv4

asammdf 2.2.0 nodata mdfv4

mdfreader 0.2.5 mdfv4

Open test file - ram usage

9.4. x86 Python results 59

asammdf Documentation, Release 2.2.0

0 2500 5000 7500 10000 12500 15000 17500 20000
Time [ms]

asammdf 2.2.0 mdfv3

asammdf 2.2.0 compression mdfv3

mdfreader 0.2.5 mdfv3

asammdf 2.2.0 mdfv4

asammdf 2.2.0 compression mdfv4

mdfreader 0.2.5 mdfv4

Save test file - time

0 200 400 600 800 1000 1200 1400 1600
RAM [MB]

asammdf 2.2.0 mdfv3

asammdf 2.2.0 compression mdfv3

mdfreader 0.2.5 mdfv3

asammdf 2.2.0 mdfv4

asammdf 2.2.0 compression mdfv4

mdfreader 0.2.5 mdfv4

Save test file - ram usage

60 Chapter 9. Benchmarks

asammdf Documentation, Release 2.2.0

0 5000 10000 15000 20000 25000
Time [ms]

asammdf 2.2.0 mdfv3

asammdf 2.2.0 compression mdfv3

asammdf 2.2.0 nodata mdfv3

mdfreader 0.2.5 mdfv3

asammdf 2.2.0 mdfv4

asammdf 2.2.0 compression mdfv4

asammdf 2.2.0 nodata mdfv4

mdfreader 0.2.5 mdfv4

Get all channels (36424 calls) - time

0 100 200 300 400 500 600
RAM [MB]

asammdf 2.2.0 mdfv3

asammdf 2.2.0 compression mdfv3

asammdf 2.2.0 nodata mdfv3

mdfreader 0.2.5 mdfv3

asammdf 2.2.0 mdfv4

asammdf 2.2.0 compression mdfv4

asammdf 2.2.0 nodata mdfv4

mdfreader 0.2.5 mdfv4

Get all channels (36424 calls) - ram usage

9.4. x86 Python results 61

asammdf Documentation, Release 2.2.0

62 Chapter 9. Benchmarks

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

63

asammdf Documentation, Release 2.2.0

64 Chapter 10. Indices and tables

Index

A
add_trigger() (asammdf.mdf3.MDF3 method), 20
append() (asammdf.mdf3.MDF3 method), 20
append() (asammdf.mdf4.MDF4 method), 39
astype() (asammdf.signal.Signal method), 49
attach() (asammdf.mdf4.MDF4 method), 39
AttachmentBlock (class in asammdf.mdf4), 42

C
Channel (class in asammdf.mdf3), 23
Channel (class in asammdf.mdf4), 42
ChannelConversion (class in asammdf.mdf3), 24
ChannelConversion (class in asammdf.mdf4), 42
ChannelDependency (class in asammdf.mdf3), 26
ChannelExtension (class in asammdf.mdf3), 27
ChannelGroup (class in asammdf.mdf3), 28
ChannelGroup (class in asammdf.mdf4), 43
convert() (asammdf.mdf.MDF method), 18
cut() (asammdf.signal.Signal method), 49

D
DataBlock (class in asammdf.mdf4), 44
DataGroup (class in asammdf.mdf3), 30
DataGroup (class in asammdf.mdf4), 43
DataList (class in asammdf.mdf4), 44

E
extract_attachment() (asammdf.mdf4.MDF4 method), 40

F
FileHistory (class in asammdf.mdf4), 46
FileIdentificationBlock (class in asammdf.mdf3), 31
FileIdentificationBlock (class in asammdf.mdf4), 45
filter() (asammdf.mdf.MDF method), 18
from_text() (asammdf.mdf4.TextBlock class method), 47

G
get() (asammdf.mdf3.MDF3 method), 21
get() (asammdf.mdf4.MDF4 method), 40

H
HeaderBlock (class in asammdf.mdf3), 32
HeaderBlock (class in asammdf.mdf4), 45

I
info() (asammdf.mdf3.MDF3 method), 22
info() (asammdf.mdf4.MDF4 method), 41
interp() (asammdf.signal.Signal method), 49
iter_get_triggers() (asammdf.mdf3.MDF3 method), 22
iter_to_pandas() (asammdf.mdf.MDF method), 18

M
MDF (class in asammdf.mdf), 17
MDF3 (class in asammdf.mdf3), 19
MDF4 (class in asammdf.mdf4), 38

P
plot() (asammdf.signal.Signal method), 49
ProgramBlock (class in asammdf.mdf3), 33

R
remove() (asammdf.mdf3.MDF3 method), 22
remove() (asammdf.mdf4.MDF4 method), 41

S
SampleReduction (class in asammdf.mdf3), 34
save() (asammdf.mdf3.MDF3 method), 22
save() (asammdf.mdf4.MDF4 method), 41
Signal (class in asammdf.signal), 48
SourceInformation (class in asammdf.mdf4), 46

T
TextBlock (class in asammdf.mdf3), 35
TextBlock (class in asammdf.mdf4), 46
TriggerBlock (class in asammdf.mdf3), 36

65

	Project goals
	Features
	Major features still not implemented
	Dependencies
	Features
	Major features still not implemented
	Installation
	API
	Benchmarks
	Indices and tables

