
asammdf Documentation
Release 2.0.0pre

Daniel Hrisca

Jul 31, 2017

Contents

1 Project goals 3

2 Features 5

3 Major features still not implemented 7

4 Dependencies 9

5 Features 11

6 Major features still not implemented 13

7 Installation 15

8 API 17

9 Benchmarks 25

10 Indices and tables 35

i

ii

asammdf Documentation, Release 2.0.0pre

asammdf is a fast parser/editor for ASAM (Associtation for Standardisation of Automation and Measuring Systems)
MDF (Measurement Data Format) files.

asammdf supports mdf versions 3 and 4 and can be used with Python 2.7 and Python >= 3.4

Contents 1

asammdf Documentation, Release 2.0.0pre

2 Contents

CHAPTER 1

Project goals

The main goals for this library are:

• to be faster than the other Python based mdf libraries

• clean and simple data types

3

asammdf Documentation, Release 2.0.0pre

4 Chapter 1. Project goals

CHAPTER 2

Features

• read sorted and unsorted MDF v3 and v4 files

• files are loaded in RAM for fast operations

– for low memory computers or for large data files there is the option to load only the metadata and leave
the raw channel data (the samples) unread; this of course will mean slower channel data access speed

• extract channel data, master channel and extra channel information as Signal objects for unified operations with
v3 and v4 files

• time domain operation using the Signal class

– Pandas data frames are good if all the channels have the same time based

– usually a measuremetn will have channels from different sources at different rates

– the Signal class facilitates operations with such channels

• remove data group by index or by specifing a channel name inside the target data group

• append new channels

• convert to different mdf version

5

asammdf Documentation, Release 2.0.0pre

6 Chapter 2. Features

CHAPTER 3

Major features still not implemented

• functionality related to sample reduction block (but the class is defined)

• mdf 3 channel dependency functionality

• functionality related to trigger blocks (but the class is defined)

• handling of unfinnished measurements (mdf 4)

• compressed data blocks for mdf >= 4.10

• mdf 4 attachment blocks

• mdf 4 channel arrays

• mdf 4 VLSD channels and SDBLOCKs

• xml schema for TXBLOCK and MDBLOCK

7

asammdf Documentation, Release 2.0.0pre

8 Chapter 3. Major features still not implemented

CHAPTER 4

Dependencies

asammdf uses the following libraries

• numpy : the heart that makes all tick

• numexpr : for formula based channel conversions

• blosc : optionally used for in memmory raw channel data compression

• matplotlib : for Signal plotting

9

asammdf Documentation, Release 2.0.0pre

10 Chapter 4. Dependencies

CHAPTER 5

Features

• read sorted and unsorted MDF v3 files

• files are loaded in RAM for fast operations

– for low memory computers or for large data files there is the option to load only the metadata and
leave the raw channel data (the samples) unread; this of course will mean slower channel data access
speed

• extract channel data, master channel and extra channel information (unit, conversion rule)

• remove data group by index or by specifing a channel name inside the target data group

• append new channels

• convert to different mdf version

11

asammdf Documentation, Release 2.0.0pre

12 Chapter 5. Features

CHAPTER 6

Major features still not implemented

• functionality related to sample reduction block (but the class is defined)

• mdf 3 channel dependency functionality

• functionality related to trigger blocks (but the class is defined)

• handling of unfinnished measurements (mdf 4)

• compressed data blocks for mdf >= 4.10

• mdf 4 attachment blocks

• mdf 4 channel arrays

• mdf 4 VLSD channels and SDBLOCKs

• xml schema for TXBLOCK and MDBLOCK

13

asammdf Documentation, Release 2.0.0pre

14 Chapter 6. Major features still not implemented

CHAPTER 7

Installation

asammdf is available on

• github: https://github.com/danielhrisca/asammdf/

• PyPI: https://pypi.org/project/asammdf/

pip install asammdf

15

https://github.com/danielhrisca/asammdf/
https://pypi.org/project/asammdf/

asammdf Documentation, Release 2.0.0pre

16 Chapter 7. Installation

CHAPTER 8

API

MDF

This class acts as a proxy for the MDF3 and MDF4 classes. All attribute access is delegated to the underling file
attribute (MDF3 or MDF4 object). See MDF3 and MDF4 for available extra methods.

MDF3 and MDF4 classes

MDF3

asammdf tries to emulate the mdf structure using Python builtin data types.

The header attibute is an OrderedDict that holds the file metadata.

The groups attribute is a dictionary list with the following keys:

• data_group : DataGroup object

• channel_group : ChannelGroup object

• channels : list of Channel objects with the same order as found in the mdf file

• channel_conversions : list of ChannelConversion objects in 1-to-1 relation with the channel list

• channel_sources : list of SourceInformation objects in 1-to-1 relation with the channels list

• data_block : DataBlock object

• texts : dictionay containing TextBlock objects used throughout the mdf

– channels : list of dictionaries that contain TextBlock objects ralated to each channel

* long_name_addr : channel long name

* comment_addr : channel comment

* display_name_addr : channel display name

17

asammdf Documentation, Release 2.0.0pre

– channel group : list of dictionaries that contain TextBlock objects ralated to each channel group

* comment_addr : channel group comment

– conversion_tab : list of dictionaries that contain TextBlock objects ralated to VATB and VTABR channel
conversions

* text_{n} : n-th text of the VTABR conversion

The file_history attribute is a TextBlock object.

The channel_db attibute is a dictionary that holds the (data group index, channel index) pair for all signals. This is
used to speed up the get_signal_by_name method.

The master_db attibute is a dictionary that holds the channel index of the master channel for all data groups. This is
used to speed up the get_signal_by_name method.

API

MDF version 3 blocks

The following classes implement different MDF version3 blocks.

Channel Class

ChannelConversion Class

ChannelDependency Class

ChannelExtension Class

ChannelGroup Class

DataGroup Class

FileIdentificationBlock Class

HeaderBlock Class

ProgramBlock Class

SampleReduction Class

TextBlock Class

TriggerBlock Class

MDF4

asammdf tries to emulate the mdf structure using Python builtin data types.

18 Chapter 8. API

asammdf Documentation, Release 2.0.0pre

The header attibute is an OrderedDict that holds the file metadata.

The groups attribute is a dictionary list with the following keys:

• data_group : DataGroup object

• channel_group : ChannelGroup object

• channels : list of Channel objects with the same order as found in the mdf file

• channel_conversions : list of ChannelConversion objects in 1-to-1 relation with the channel list

• channel_sources : list of SourceInformation objects in 1-to-1 relation with the channels list

• data_block : DataBlock object

• texts : dictionay containing TextBlock objects used throughout the mdf

– channels : list of dictionaries that contain TextBlock objects ralated to each channel

* name_addr : channel name

* comment_addr : channel comment

– channel group : list of dictionaries that contain TextBlock objects ralated to each channel group

* acq_name_addr : channel group acquisition comment

* comment_addr : channel group comment

– conversion_tab : list of dictionaries that contain TextBlock objects related to TABX and RTABX channel
conversions

* text_{n} : n-th text of the VTABR conversion

* default_addr : default text

– conversions : list of dictionaries that containt TextBlock obejcts related to channel conversions

* name_addr : converions name

* unit_addr : channel unit_addr

* comment_addr : converison comment

* formula_addr : formula text; only valid for algebraic conversions

– sources : list of dictionaries that containt TextBlock obejcts related to channel sources

* name_addr : source name

* path_addr : source path_addr

* comment_addr : source comment

The file_history attribute is a list of (FileHistory, TextBlock) pairs .

The channel_db attibute is a dictionary that holds the (data group index, channel index) pair for all signals. This is
used to speed up the get_signal_by_name method.

The master_db attibute is a dictionary that holds the channel index of the master channel for all data groups. This is
used to speed up the get_signal_by_name method.

8.1. MDF 19

asammdf Documentation, Release 2.0.0pre

API

MDF version 4 blocks

The following classes implement different MDF version3 blocks.

Channel Class

ChannelConversion Class

ChannelGroup Class

DataGroup Class

DataList Class

DataBlock Class

FileIdentificationBlock Class

HeaderBlock Class

SourceInformation Class

FileHistory Class

TextBlock Class

Notes about compression and load_measured_data arguments

By default MDF object use no compression and the raw channel data is loaded into RAM. This will give you the best
performance from asammdf.

However if you reach the physical memmory limit asammdf gives you two options

1. use the compression flag: raw channel data is loaded into RAM but it is compressed. The default compression
library is blosc and as a fallback zlib is used (slower). The advange is that you save RAM, but in return you
will pay the compression/decompression time penalty in all operations (file open, getting channel data, saving
to disk, converting).

2. use the load_measured_data flag: raw channel data is not read.

MDF defaults

Advantages

• best performance

Disadvantages

• highest RAM usage

20 Chapter 8. API

asammdf Documentation, Release 2.0.0pre

Use case

• when data fits inside the system RAM

MDF with compression

Advantages

• lower RAM usage than default

• alows saving to disk and appending new data

Disadvantages

• slowest

Use case

• when default data exceeds RAM and you need to append and save

MDF with load_measured_data

Advantages

• lowest RAM usage

• faster than compression

Disadvantages

• ReadOnly mode: appending and saving is not possible

Use case

• when default data exceeds RAM and you only want to extract information from the file

Note: See benchmarks for the effects of using the flags.

Signal

Examples

Working with MDF

from asammdf import MDF, Signal
import numpy as np

create 3 Signal objects

timestamps = np.array([0.1, 0.2, 0.3, 0.4, 0.5], dtype=np.float32)

unit8
s_uint8 = Signal(samples=np.array([0, 1, 2, 3, 4], dtype=np.uint8),

timestamps=timestamps,

8.2. Signal 21

asammdf Documentation, Release 2.0.0pre

name='Uint8_Signal',
unit='u1')

int32
s_int32 = Signal(samples=np.array([-20, -10, 0, 10, 20], dtype=np.int32),

timestamps=timestamps,
name='Int32_Signal',
unit='i4')

float64
s_float64 = Signal(samples=np.array([-20, -10, 0, 10, 20], dtype=np.int32),

timestamps=timestamps,
name='Float64_Signal',
unit='f8')

create empty MDf version 4.00 file
mdf4 = MDF(version='4.00')

append the 3 signals to the new file
signals = [s_uint8, s_int32, s_float64]
mdf4.append(signals, 'Created by Python')

save new file
mdf4.save('my_new_file.mf4')

convert new file to mdf version 3.10 with compression of raw channel data
mdf3 = mdf4.convert(to='3.10', compression=True)
print(mdf3.version)
prints >>> 3.10

get the float signal
sig = mdf3.get('Float64_Signal')
print(sig)
prints >>> Signal { name="Float64_Signal": s=[-20 -10 0 10 20] t=[0.1
→˓ 0.2 0.30000001 0.40000001 0.5] unit="f8"
→˓conversion=None }

Working with Signal

from asammdf import Signal
import numpy as np

create 3 Signal objects with different time stamps

unit8 with 100ms time raster
timestamps = np.array([0.1 * t for t in range(5)], dtype=np.float32)
s_uint8 = Signal(samples=np.array([t for t in range(5)], dtype=np.uint8),

timestamps=timestamps,
name='Uint8_Signal',
unit='u1')

int32 with 50ms time raster
timestamps = np.array([0.05 * t for t in range(10)], dtype=np.float32)
s_int32 = Signal(samples=np.array(list(range(-500, 500, 100)), dtype=np.int32),

timestamps=timestamps,
name='Int32_Signal',

22 Chapter 8. API

asammdf Documentation, Release 2.0.0pre

unit='i4')

float64 with 300ms time raster
timestamps = np.array([0.3 * t for t in range(3)], dtype=np.float32)
s_float64 = Signal(samples=np.array(list(range(2000, -1000, -1000)), dtype=np.int32),

timestamps=timestamps,
name='Float64_Signal',
unit='f8')

prod = s_float64 * s_uint8
prod.name = 'Uint8_Signal * Float64_Signal'
prod.unit = '*'
prod.plot()

pow2 = s_uint8 ** 2
pow2.name = 'Uint8_Signal ^ 2'
pow2.unit = 'u1^2'
pow2.plot()

allsum = s_uint8 + s_int32 + s_float64
allsum.name = 'Uint8_Signal + Int32_Signal + Float64_Signal'
allsum.unit = '+'
allsum.plot()

inplace operations
pow2 *= -1
pow2.name = '- Uint8_Signal ^ 2'
pow2.plot()

8.3. Examples 23

asammdf Documentation, Release 2.0.0pre

24 Chapter 8. API

CHAPTER 9

Benchmarks

Intro

The benchmarks were done using two test files (for mdf version 3 and 4) of around 170MB. The files contain 183 data
groups and a total of 36424 channels.

asamdf 2.0.0 was compared against mdfreader 0.2.5. mdfreader seems to be the most used Python package to handle
MDF files, and it also supports both version 3 and 4 of the standard.

The three benchmark cathegories are file open, file save and extracting the data for all channels inside the file(36424
calls). For each cathegory two aspect were noted: elapsed time and peak RAM usage.

Dependencies

You will need the following packages to be able to run the benchmark script

• psutil

• mdfreader

x64 Python results

The test environment used for 64 bit tests had:

• Python 3.6.1 (v3.6.1:69c0db5, Mar 21 2017, 18:41:36) [MSC v.1900 64 bit (AMD64)]

• Windows-7-6.1.7601-SP1

• Intel64 Family 6 Model 94 Stepping 3, GenuineIntel (i7-6820Q)

• 16GB installed RAM

The notations used in the results have the following meaning:

25

asammdf Documentation, Release 2.0.0pre

• nodata = MDF object created with load_measured_data=False (raw channel data no loaded into RAM)

• compression = MDF object created with compression=True (raw channel data loaded into RAM and com-
pressed)

• noconvert = MDF object created with convertAfterRead=False

Raw data

Open file Time [ms] RAM [MB]
asammdf 2.0.0 mdfv3 721 352
asammdf 2.0.0 compression mdfv3 1008 275
asammdf 2.0.0 nodata mdfv3 641 199
mdfreader 0.2.5 mdfv3 2996 526
mdfreader 0.2.5 no convert mdfv3 2846 393
asammdf 2.0.0 mdfv4 1634 439
asammdf 2.0.0 compression mdfv4 1917 343
asammdf 2.0.0 nodata mdfv4 1594 274
mdfreader 0.2.5 mdfv4 31023 739
mdfreader 0.2.5 noconvert mdfv4 30693 609

Save file Time [ms] RAM [MB]
asammdf 2.0.0 mdfv3 472 353
asammdf 2.0.0 compression mdfv3 667 275
mdfreader 0.2.5 mdfv3 18910 2003
asammdf 2.0.0 mdfv4 686 447
asammdf 2.0.0 compression mdfv4 836 352
mdfreader 0.2.5 mdfv4 16631 2802

Get all channels Time [ms] RAM [MB]
asammdf 2.0.0 mdfv3 2492 362
asammdf 2.0.0 compression mdfv3 14474 285
asammdf 2.0.0 nodata mdfv3 9621 215
mdfreader 0.2.5 mdfv3 31 526
asammdf 2.0.0 mdfv4 2066 450
asammdf 2.0.0 compression mdfv4 16944 359
asammdf 2.0.0 nodata mdfv4 12364 292
mdfreader 0.2.5 mdfv4 39 739

Graphical results

x86 Python results

The test environment used for 32 bit tests had:

• Python 3.6.1 (v3.6.1:69c0db5, Mar 21 2017, 17:54:52) [MSC v.1900 32 bit (Intel)]

• Windows-7-6.1.7601-SP1

• Intel64 Family 6 Model 94 Stepping 3, GenuineIntel (i7-6820Q)

• 16GB installed RAM

The notations used in the results have the following meaning:

26 Chapter 9. Benchmarks

asammdf Documentation, Release 2.0.0pre

9.4. x86 Python results 27

asammdf Documentation, Release 2.0.0pre

28 Chapter 9. Benchmarks

asammdf Documentation, Release 2.0.0pre

9.4. x86 Python results 29

asammdf Documentation, Release 2.0.0pre

30 Chapter 9. Benchmarks

asammdf Documentation, Release 2.0.0pre

9.4. x86 Python results 31

asammdf Documentation, Release 2.0.0pre

32 Chapter 9. Benchmarks

asammdf Documentation, Release 2.0.0pre

• nodata = MDF object created with load_measured_data=False (raw channel data no loaded into RAM)

• compression = MDF object created with compression=True (raw channel data loaded into RAM and com-
pressed)

• noconvert = MDF object created with convertAfterRead=False

Raw data

Open file Time [ms] RAM [MB]
asammdf 2.0.0 mdfv3 851 283
asammdf 2.0.0 compression mdfv3 1149 190
asammdf 2.0.0 nodata mdfv3 765 129
mdfreader 0.2.5 mdfv3 3633 453
mdfreader 0.2.5 no convert mdfv3 3309 319
asammdf 2.0.0 mdfv4 1854 339
asammdf 2.0.0 compression mdfv4 2191 236
asammdf 2.0.0 nodata mdfv4 1772 173
mdfreader 0.2.5 mdfv4 42177 576
mdfreader 0.2.5 noconvert mdfv4 41799 447

Save file Time [ms] RAM [MB]
asammdf 2.0.0 mdfv3 564 286
asammdf 2.0.0 compression mdfv3 756 194
mdfreader 0.2.5 mdfv3 17499 1236
asammdf 2.0.0 mdfv4 906 347
asammdf 2.0.0 compression mdfv4 1112 244
mdfreader 0.2.5 mdfv4 15027 1698

Get all channels Time [ms] RAM [MB]
asammdf 2.0.0 mdfv3 3224 293
asammdf 2.0.0 compression mdfv3 25019 201
asammdf 2.0.0 nodata mdfv3 18824 144
mdfreader 0.2.5 mdfv3 35 454
asammdf 2.0.0 mdfv4 2513 349
asammdf 2.0.0 compression mdfv4 25140 250
asammdf 2.0.0 nodata mdfv4 19862 188
mdfreader 0.2.5 mdfv4 50 576

9.4. x86 Python results 33

asammdf Documentation, Release 2.0.0pre

34 Chapter 9. Benchmarks

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

35

	Project goals
	Features
	Major features still not implemented
	Dependencies
	Features
	Major features still not implemented
	Installation
	API
	Benchmarks
	Indices and tables

